Обобщенная схема проектирования встраиваемых систем
Рассмотрим известную (см. например [5-6]) обобщенную схему проектирования встраиваемой системы (рис. 1).
Рис. 1. Обобщенная схема проектирования встраиваемой системы
На первом этапе происходит определение требований к системе. Определяются необходимые функциональные характеристики системы и задаются ограничения. Типовыми ограничениями являются быстродействие, энергопотребление, размер и стоимость изготовления кристаллов в рамках заданного технологического процесса производства микросхем.
На следующем этапе выполняется декомпозиция системы на аппаратные и программные компоненты (HW/SW partitioning). Принимаются решения об общей структуре системы (в первую очередь, число и характеристики вычислительных блоков) и выполняется отображение требуемой функциональности на программные и аппаратные части.
Далее процесс разделяется на две ветви – для проектирования программных и аппаратных компонентов. Выходом аппаратной ветви являются модели аппаратуры. В этой ветви принимаются решения об архитектуре выделенных в системе аппаратных вычислительных устройств. Для программируемых компонентов определяется состав функциональных блоков (включая внешние модули расширений для специфических вычислений), структура памяти (включая регистры) и система команд. Результатом проектирования программной части являются модели программных компонентов, совместимые с соответствующими аппаратными моделями.
Процесс носит итеративный характер, и точность описания моделей на каждой итерации постепенно повышается от высокоуровневых функциональных описаний до синтезируемых спецификаций аппаратуры и машинных кодов программ, соответствующих этой аппаратуре. Каждая итерация заканчивается интеграцией результатов программной и аппаратных ветвей, моделированием полученной системы, проверкой функциональной корректности и сбором соответствующих оценок ключевых параметров для их анализа с целью дальнейшей оптимизации. На основании полученных таким образом оценок принимаются решения о пересмотре декомпозиции между программными и аппаратными компонентами, о конкретных изменениях программ и аппаратуры, например, добавлении/удалении вычислительных блоков или оптимизации системы команд.
Цикл повторяется до получения конкретных спецификаций программ и аппаратуры, которые совместно задают встраиваемую систему, удовлетворяющую всем заданным требованиям. Затем проводится верификация спецификаций, и цикл проектирования завершается подготовкой отчуждаемого продукта, пригодного для интеграции в более крупные проекты «систем на чипе» (SoC) или для запуска в отдельное производство. Такой продукт обычно включает в себя:
синтезируемые RTL (register transfer level) описания аппаратуры (обычно на VHDL/Verilog); исходные (на С/ассемблере) и машинные (firmware) коды базовых системных и прикладных программ для целевой аппаратуры; набор инструментов кросс-разработки (среда программирования, см. подраздел 1.2) для создания и отладки новых программ; документацию для программистов (справочники по архитектуре системы, по системе команд, по поставляемому системному программному обеспечению и различным библиотекам, по среде программирования).
Существует много различных методов и средств автоматизации проектирования аппаратуры (см., например, обзор [7]). В случае встраиваемых систем огромное внимание уделяется задаче оптимального разбиения системы на аппаратные и программные компоненты (HW/SW partitioning and codesign) – см. [8-13]. Однако в данной статье мы ограничимся только рассмотрением создания и использования (кроме собственно основного назначения для разработки реальных программ) кросс-инструментария как средства получения дополнительных данных для поддержки принятия проектных решений в процессе проектирования аппаратуры (см. следующие разделы). Конкретные методы использования таких данных выходят за рамки данной статьи.
Проектирование встраиваемых систем
В СССР первыми встраиваемыми компьютерными системами можно считать специализированные бортовые вычислительные машины для военных и космических отраслей. Первые такие машины начали разрабатывать в конце 1950-х (см. [1]-[3]) на базе появившихся тогда сплавных транзисторов, и в начале 1960-х их уже стали применять на практике. В [1] в качестве одних из первых таких систем упоминаются передвижные компьютеры для нужд ПВО (1960-1962), обеспечивавшие управление зенитно-ракетными комплексами с сопровождением многих десятков целей. В зарубежных источниках [4] первой широко известной встраиваемой системой называют бортовой компьютер космического корабля Apollo (середина 1960-х).
Долгое время основной областью применения встраиваемых систем были именно задачи космического и военного назначения. В современном мире встраиваемые системы можно найти в самых различных областях от той же военной индустрии до бытовых устройств. Особенностью проектирования классической встраиваемой системы (см., например [5], [8]) является изначальное построение программно-аппаратного комплекса «в целом» под заранее известный набор фиксированных задач. При этом проектирование встраиваемой системы состоит в построении спецификаций ее аппаратных и программных компонентов, пригодных для производства реальных устройств и выполняющих заданные функции в рамках определенных ограничений (обычно быстродействие, энергопотребление, размер и стоимость изготовления кристаллов). В качестве конечной спецификации программной части системы выступает образ начального содержимого памяти системы (firmware), представляющий собой двоичные коды программ (машинные команды) и начальные данные. Спецификацией аппаратуры является описание на некотором языке, пригодное для дальнейшего полностью автоматического синтеза технологических спецификаций для производства реальных микросхем.
Разработка программ с помощью кросс-инструментария
Целью использования кросс-инструментов является создание на инструментальной машине файла с двоичным образом (firmware) начального содержимого памяти (как машинные команды, так и данные) для целевой аппаратной системы. Такой файл затем используется для загрузки в конкретные целевые устройства.
В качестве языков программирования встраиваемых систем выступают обычно C (а также его расширенные подмножества типа Embedded C [14]) и ассемблер. Ассемблер используется как в виде вставок в код на языке С, так и в виде отдельных ассемблерных модулей. В случае встраиваемых систем программирование на ассемблере остается важной составляющей создания программ ввиду, как правило, жестких требований к высокой производительности и малому объему программного кода.
На рис. 2 представлена типовая схема разработки программ с помощью кросс-инструментария.
Обычно процесс взаимодействия программиста с кросс-инструментами происходит через визуальную интегрированную среду разработки (IDE) со встроенным редактором, механизмами поддержки проектов, различными средствами управления и анализа результатов работы отдельных инструментов.
Рис. 2. Разработка программ с помощью кросс-инструментов.
Реальные программы обычно состоят из нескольких модулей, каждому из которых соответствует файл с исходными текстами программ (на языках высокого уровня или ассемблера). Компилятор транслирует модули на языке высокого уровня в промежуточные ассемблерные модули. Ассемблер
отвечает за преобразование ассемблерных модулей (как написанных вручную, так и сгенерированных компилятором) в объектные модули с машинными кодами и данными для целевой аппаратуры. В качестве формата объектных модулей обычно используется ELF [15-16], включающий в себя различные секции (например, секции исполняемого кода, секции данных, секции с информацией о символах и секции с отладочной информацией). Компоновщик выполняет сборку нескольких объектных модулей в один абсолютный модуль с объединением соответствующих секций входных объектных файлов.
При этом выполняются перемещения символов по абсолютным адресам памяти (автоматически или в соответствии с заданной программистом картой памяти) с соответствующими исправлениями зависящих от них кодов команд и значений данных. На этом заканчивается этап сборки программы. Полученный абсолютный модуль можно преобразовать в образ памяти для непосредственной загрузки в целевую аппаратуру с помощью программатора.
Для программиста взаимодействие с исполняемой моделью аппаратуры осуществляется через отладчик, который позволяет просматривать состояние модели (содержимое памяти, регистров, шин, сигналов) и осуществлять управляемое (в том числе, пошаговое) выполнение целевой программы на уровне отдельных команд или строчек исходного кода. Совместно с отладчиком используются различные виды профилировщиков
и средств анализа, визуализирующих необходимые характеристики модели (как статические, так и времени исполнения) и соответствующие статистики. В качестве примеров можно привести:
подсчет числа тактов и количества раз исполнения для каждой строчки программы (на уровне исходных кодов языка программирования высокого уровня, на уровне ассемблерных текстов и на уровне дисассемблированных команд процессора); визуализация графа вызовов функций и статистика затраченных для каждого узла тактов и количества раз исполнения; список функций программы, их размеров в программном коде и отражение количества вызовов и суммарных затрат (тактов) на их выполнение (с учетом и без учета вызова потомков); статистика доступа к различным областям памяти; статистика используемого объема памяти; различные статистики на уровне операционной системы (в терминах задач и примитивов синхронизации, зарегистрированных в системе).
В качестве модели целевой системы для кросс-отладчика чаще всего выступает симулятор, позволяющий моделировать целевую аппаратуру полностью на инструментальной машине. Существуют симуляторы различного уровня абстракции от функционального симулятора на уровне всей системы до симуляторов на уровне системы команд (в том числе потактово-точных) и симуляторов, эмулирующих точную структуру аппаратуры на уровне функциональных блоков и конкретных вентилей.В качестве симулятора в составе инструментария кросс-разработки обычно используется симулятор уровня системы команд (в том числе, с учетом конвейерных эффектов с потактовой точностью). Также отладчик может поддерживать отладку непосредственно аппаратной модели в виде реального чипа или модели в ПЛИС (FPGA), подключаемой к инструментальной машине, что может иметь место на финальных стадиях проектирования и на стадии эксплуатации. Использование настоящей аппаратуры позволяет запускать программы в режиме реального времени, однако программный симулятор предоставляет гораздо больше возможностей для отладки и анализа программ.
1
Дело в том, что за разработку базового процессора и за разработку расширений могут отвечать разные компании, причем каждая из них, как правило, помимо разграничения ответственности, желает сохранить детали конструкции соответствующей аппаратуры в тайне.