Основы объектно-ориентированного программирования

         

Библиографические замечания


Понятия (единичного) наследования и динамического связывания были введены в языке Симула 67, на который можно найти ссылки в лекции 17 курса "Основы объектно-ориентированного проектирования". Отложенные процедуры - это тоже изобретение Симулы (под другим именем (виртуальные процедуры) и при других соглашениях).

Отношение "является" изучалось, в основном, с точки зрения приложений искусственного интеллекта в [Brachman 1983].

Формальное изучение наследования и его семантики проведено в [Cardelli 1984].

Соглашение об использовании для переопределения двойного плюса пришло из системы обозначений Business Object Notation, предложенной Nerson'ом и Walden'ом (ссылки в лекции 9 курса "Основы объектно-ориентированного проектирования").

Конструкция Precursor (аналогичная конструкции super в языке Smalltalk, но с важным отличием, разрешающим ее использовать только для переопределения процедур) является результатом неопубликованной совместной работы с Roger Browne, James McKim, Kim Walden и Steve Tynor.



Что делать с отложенными классами?


Присутствие отложенных элементов в системе вызывает вопрос: "что случится, если компонент rotate применить к объекту типа FIGURE?" или в общем виде - "можно ли применить отложенный компонент к прямому экземпляру отложенного класса?" Ответ может обескуражить: такой вещи как объект типа FIGURE не существует - прямых экземпляров отложенных классов не бывает.

Правило отсутствия экземпляров отложенных классов

Тип создания в процедуре создания не может быть отложенным.

Напомним, что тип создания - это тип x, для формы create x, и U для формы create {U} x. Тип считается отложенным, если таков его базовый класс.

Поэтому вызов конструктора create f некорректен и будет отвергнут компилятором, если типом f будет один из отложенных классов: FIGURE, OPEN_FIGURE, CLOSED_FIGURE. Это правило устраняет опасность ошибочных вызовов компонентов.

Отметим однако, что даже, если тип сущности f отложенный, то допустима явная форма процедуры создания - create{RECTANGLE} f, поскольку здесь типом создания является эффективный потомок FIGURE - класс RECTANGLE. Мы уже видели, как этот прием используется в многовариантной процедуре создания для объектов класса FIGURE, которые, в зависимости от контекста, будут экземплярами эффективных классов RECTANGLE, CIRCLE и др.

Может показаться, что это правило ограничивает полезность отложенных классов, делая их просто синтаксической уловкой для обмана системы статических типов. Это было бы верно, если бы не полиморфизм и динамическое связывание. Нельзя создать объект типа FIGURE, но можно объявить полиморфную сущность этого типа, а затем использовать ее, не зная точно, к объекту какого типа она присоединена в конкретном вычислении:

f: FIGURE ... f := "Некоторое выражение эффективного типа, такого как CIRCLE или POLYGON" ... f.rotate (some_point, some_angle) f.display ...

Такие примеры являются комбинацией и кульминацией уникальных средств абстракции ОО-метода таких, как классы, скрытие информации, единственный выбор, наследование, полиморфизм, динамическое связывание, отложенные классы (и, как будет видно дальше, утверждения). Вы манипулируете объектами, не зная точно их типов, задавая только минимум информации, необходимой для требуемых операций. Имея надежный штамп контролера типов, удостоверяющий согласованность вызовов этих операций с их объявлениями, можно рассчитывать на большую силу - динамическое связывание, которая позволяет применять корректную версию каждой операции, не зная точно, что это за версия.



Что на самом деле происходит при полиморфном присоединении?


Все сущности, встречающиеся в предыдущих примерах полиморфных присваиваний, имеют тип ссылок: возможными значениями p, r и t являются не объекты, а ссылки на объекты. Поэтому результатом присваивания p := r является просто новое присоединение ссылки.


Рис. 14.3.  Полиморфное присоединение ссылки

Несмотря на название, не следует представлять полиморфизм как некоторую трансмутацию объектов во время выполнения программы. Будучи один раз создан, объект никогда не изменяет свой тип. Так могут поступать только ссылки, которые могут указывать на объекты разных типов. Отсюда также следует, что за полиморфизм не нужно платить потерей эффективности, перенаправление ссылки - очень быстрая операция, ее стоимость не зависит от включенных в эту операцию объектов.

Полиморфные присоединения допускаются только для целей типа ссылки, но, ни в коем случае, для расширенных типов. Поскольку у класса-потомка могут быть новые атрибуты, то соответствующие ему экземпляры могут иметь больше полей. На рис. 14.3 видно, что объект класса RECTANGLE больше, чем объект класса POLYGON. Такая разница в размерах объектов не приводит к проблемам, если все, что заново присоединяется, имеет тип ссылки. Но если p - не ссылка, а имеет развернутый тип (например, объявлена как expanded POLYGON), то значением p является непосредственно некоторый объект, и всякое присваивание p будет менять содержимое этого объекта. В этом случае никакой полиморфизм невозможен.



Динамическое связывание


Динамическое связывание дополнит переопределение, полиморфизм и статическую типизацию, создавая базисную тетралогию наследования.



Динамическое связывание и эффективность




Можно подумать, что сила механизма динамического связывания приведет во время выполнения к недопустимым накладным расходам. Такая опасность существует, но аккуратное проектирование языка и хорошие методы его реализации могут ее предотвратить.

Дело в том, что динамическое связывание требует несколько большего объема действий во время выполнения. Сравним вызов обычной процедуры в традиционном языке программирования (Pascal, Ada, C, ...)

f (x, a, b, c...)

с ОО-формой

x.f (a, b, c...)

Разница между этими двумя формами уже была разъяснена при введении понятия класса, для идентификации типа модуля. Но сейчас мы понимаем, что это связано не только со стилем, имеется также различие и в семантике. В форме (1), какой именно компонент обозначает имя f известно статически во время компиляции или, в худшем случае, во время компоновки, если для объединения раздельно откомпилированных модулей используется компоновщик. Однако при динамическом связывании такая информация недоступна статически: для f в форме (2) выбор компонента зависит от объекта, к которому присоединен x во время конкретного выполнения. Каким будет этот тип нельзя (в общем случае) определить по тексту программы, это служит источником гибкости этого ранее разрекламированного механизма.

Предположим вначале, что динамическое связывание реализовано наивно. Во время выполнения хранится копия иерархии классов. Каждый объект содержит информацию о своем типе - вершине в этой иерархии. Чтобы интерпретировать во время выполнения x.f, окружение ищет соответствующую вершину и проверяет, содержит ли этот класс компонент f. Если да, то прекрасно, мы нашли то, что требовалось. Если нет, то переходим к вершине-родителю и повторяем всю операцию. Может потребоваться проделать путь до самого верхнего класса (или нескольких таких классов в случае множественного наследования).

В типизированном языке нахождение подходящего компонента гарантировано, но в нетипизированном языке, таком как Smalltalk, поиск может быть неудачным, и придется завершить выполнение диагнозом "сообщение не понято".


Такая схема все еще применяется с различными оптимизациями во многих реализациях не статически типизированных языков. Она приводит к существенным затратам, снижающим эффективность. Хуже того, эти затраты не прогнозируемы и растут с увеличением глубины структуры наследования, так как алгоритм может постоянно проходить путь до корня иерархии наследования. Это приводит к конфликту между повторным использованием и эффективностью, поскольку упорная работа над повторное использование м приводит к введению дополнительных уровней наследования. Представьте состояние бедного разработчика, который перед добавлением нового уровня наследования должен оценить, как это ударит по эффективности. Нельзя ставить разработчиков ПО перед таким выбором.

Такой подход является одним из главных источников неэффективности реализаций языка Smalltalk. Это также объясняет, почему он (по крайней мере, в коммерческих реализациях) не поддерживает множественного наследования. Причина - в том, что из-за необходимости обходить весь граф, а не одну ветвь, накладные расходы оказываются чрезмерными.

К счастью, использование статической типизации устраняет эти неприятности. При правильно построенной системе типов и алгоритмах компиляции нет никакой нужды перемещаться по структуре наследования во время выполнения. Для ОО-языка со статической типизацией возможные типы x не произвольны, а ограничены потомками исходного типа x, поэтому компилятор может упростить работу системы выполнения, построив массив структурных данных, содержащих всю необходимую информацию. При наличии этих структур данных накладные расходы на динамическое связывание сильно уменьшаются: они сводятся к вычислению индекса и доступу к массиву. Важно не только то, что такие затраты невелики, но и то, что они ограничены константой, и поэтому можно не беспокоиться о рассмотренной выше проблеме соотношения между переиспользуемостью и эффективностью. Будет ли структура наследования в вашей системе иметь глубину 2 или 20, будет ли в ней 100 классов или 10000, максимальные накладные р асходы всегда одни и те же.


Они не зависят и от того, является ли наследование единичным или множественным.



Открытие в 1985г. этого свойства, т.е. того, что даже при множественном наследовании можно реализовать вызов динамически связываемого компонента за константное время, было главным побудительным толчком к разработке проекта (среди прочего приведшего к появлению первого и настоящего изданий этой книги), направленного на построение современного окружения для разработки ПО, отталкивающегося от идей великолепно введенных языком Simula 67, распространенных затем на множественное наследование (длительный опыт применения Симулы показал, что непозволительно ограничиваться единичным наследованием), приведенных в соответствие с принципами современной программной инженерии и объединяющих эти идеи с самыми полезными результатами формальных подходов к спецификации, построению и верификации ПО. Создание эффективного механизма динамического связывания за константное время, которое на первый взгляд может показаться второстепенным среди указанного набора целей, на самом деле было настоятельно необходимым.

Эти наблюдения могут показаться странными тому, кто познакомился с ОО-технологией через линзу представлений об ОО-анализе и проектировании, в которых реализация и эффективность рассматриваются как приземленные предметы, которыми следует заниматься после того, как решено все остальное. Эффективность является одним из ключевых факторов, который должен рассматриваться на всех шагах, когда речь идет о реальной разработке промышленного ПО, о реальной увязке инженерных решений. Как отмечалось в одной из предыдущих лекций, если вы откажетесь от эффективности, то эффективность откажется от вас. Конечно, ОО-технология это нечто большее, чем динамическое связывание за константное время, но без этого не могло бы быть никакой успешной ОО-технологии.

Доступ к предшественнику процедуры


Напомним правило использования конструкции Precursor (...): она может появляться только в переопределяемой версии процедуры.

Этим обеспечивается цель введения этой конструкции: позволить новому определению использовать первоначальную реализацию. При этом возможность явного указания родителя устраняет всякую неопределенность (в частности, при множественном наследовании). Если бы допускался доступ любой процедуры к любому компоненту предков, то текст класса было бы трудно понять, читателю все время приходилось бы обращаться к текстам многих других классов.



Движения произвольных фигур


Чтобы понять необходимость в отложенных процедурах и классах, снова рассмотрим иерархию фигур FIGURE.


Рис. 14.8.  Снова иерархия FIGURE

Наиболее общим понятием здесь является FIGURE. Основываясь на механизмах полиморфизма и динамического связывания, можно попытаться применить описанную ранее общую схему:

transform (f: FIGURE) is -- Применить специфическое преобразование к f. do f.rotate (...) f.translate (...) end

с соответствующими значениями опущенных аргументов. Тогда все следующие вызовы корректны:

transform (r) -- для r: RECTANGLE transform (c) -- для c: CIRCLE transform (figarray.item (i)) -- для массива фигур: ARRAY [POLYGON]

Иными словами, требуется применить преобразования rotate и translate к фигуре f и предоставить механизму динамического связывания выбор подходящей версии (различной для классов RECTANGLE и CIRCLE), зависящей от текущего вида фигуры f, который выяснится во время выполнения.

Это действительно работает и является типичным примером элегантного стиля, ставшего возможным благодаря полиморфизму и динамическому связыванию, стиля, основанного на принципе Единственного выбора. Требуется только переопределить rotate и translate для различных вовлеченных в вычисление классов.

Но переопределять-то нечего! Класс FIGURE - это очень общее понятие, покрывающее все виды двумерных фигур. Ясно, что невозможно написать версию процедур rotate и translate, подходящую для всех фигур "вообще", не уточнив информацию об их виде.

Таким образом, мы имеем ситуацию, в которой процедура transform будет выполняться корректно, благодаря динамическому связыванию, но статически она незаконна, поскольку rotate и translate не являются компонентами класса FIGURE. Проверка типов выявит в вызовах f.rotate и f.translate ошибки.

Можно, конечно, ввести на уровне класса FIGURE процедуру rotate, которая ничего не будет делать. Но это опасный путь, компоненты rotate (center, angle) имеют интуитивно хорошо понятную семантику и "ничего не делать" не является их разумной реализацией.



Двойственная перспектива


По-видимому, нигде двойственная роль классов как модулей, с одной стороны, и типов - с другой, не проявляется так отчетливо, как при изучении наследования. При взгляде на класс, как на модуль, наследник описывает расширение модуля-родителя, а при взгляде на него, как на тип, он описывает подтип типа родителя.

Хотя некоторые аспекты наследования больше относятся к взгляду на класс, как на тип, большая часть полезна для обоих подходов, о чем свидетельствует приведенная примерная классификация (на которой отражены также несколько еще не изученных аспектов: переименование, скрытие потомков, множественное и повторное наследование). Ни один из рассматриваемых аспектов не относится исключительно к взгляду на класс, как на модуль.


Рис. 14.11.  Механизмы наследования и их роль

Эти два взгляда дополняют друг друга, придавая наследованию силу и гибкость. Эта сила может даже показаться пугающей, что побуждает предложить разделить механизм на два: на возможность расширять модули и на механизм выделения подтипов. Но когда мы вникнем в проблему глубже (в лекции о методологии наследования), то обнаружим, что у такого разделения имеется множество недостатков, и нет явных преимуществ. Наследование - это объединяющий принцип, как и многие другие объединяющие идеи в науке, он соединяет вместе явления, рассматриваемые ранее как различные.



Использование исходной версии при переопределении


Рассмотрим некоторый класс, который переопределяет подпрограмму, унаследованную от родителя. Обычная схема переопределения состоит в том, чтобы выполнить все, что делает исходная версия, предпослав ей или поместив за ней некоторые специальные действия.

Например, класс BUTTON, наследник класса WINDOW, может переопределить компонент display, рисующий кнопку, так чтобы вначале рисовалось окно, а затем появлялась рамка:

class BUTTON inherit WINDOW redefine display end feature -- Вывод display is -- Изобразить как кнопку. do "Изобразить как нормальное окно"; -- См. ниже draw_border end ... Другие компоненты ... end

где draw_border - это процедура нового класса. Для того чтобы "Изобразить как нормальное окно", нужно вызвать исходную версию display, технически известную как precursor (предшественник) процедуры draw_border.

Это достаточно общий случай, и желательно ввести для него выбрать специальное обозначение. Конструкцию

Precursor

можно использовать в качестве имени компонента, но только в теле переопределяемой подпрограммы. Вызов этого компонента, если нужно с аргументами, является вызовом родительской версии этой процедуры (предшественника).

Поэтому в последнем примере часть "Изобразить как нормальное окно" можно записать просто как

Precursor

Это будет означать вызов исходной версии этой процедуры из класса WINDOW, допустимый при переопределении процедуры классом-наследником WINDOW. Precursor - это зарезервированное имя сущности такое же, как Result или Current, и оно так же пишется курсивом с заглавной первой буквой.

В данном примере переопределяемый компонент является процедурой и поэтому вызов конструкции Precursor - это команда. Этот же вызов может участвовать при переопределении функции в выражении:

some_query (n: INTEGER): INTEGER is -- Значение, возвращаемое версией родителя, если оно -- положительно, иначе ноль do Result := (Precursor (n)).max (0) end

В случае множественного наследования, рассматриваемого в следующей лекции, у процедуры может быть несколько предшественников, что позволяет объединить несколько наследуемых процедур в одну. Тогда для устранения неоднозначности нужно будет указывать родителя, например, Precursor {WINDOW}.

Заметим, что использование конструкции Precursor не делает компонент-предшественник компонентом данного класса, компонентом является только его переопределенная версия. (В частности, предшествующая версия может не удовлетворять новому инварианту.) Целью конструкции является облегчение переопределения в случае, когда новая версия включает старую.

В более сложном случае, когда, в частности, требуется использовать и предшествующую и новую версии в качестве компонентов класса, можно воспользоваться дублируемым наследованием, при котором родительский компонент, фактически, дублируется, и у наследника создаются два законченных компонента. Это будет подробно обсуждаться при рассмотрении дублируемого наследования.



Использование правильного варианта


Операции, определенные для всех вариантов многоугольников, могут реализовываться по-разному. Например, perimeter (периметр) имеет разные версии для общих многоугольников и для прямоугольников, назовем эти версии perimeterPOL и perimeterRECT. У класса SQUARE также будет свой вариант (умноженная на 4 длина стороны). При этом естественно возникает важный вопрос: что случится, если программа, имеющая разные версии, будет применена к полиморфной сущности?

Во фрагменте

create p.make (...); x := p.perimeter

ясно, что будет использована версия perimeterPOL. Точно так же во фрагменте

create r.make (...); x := r.perimeter

будет использована версия perimeterRECT. Но что, если полиморфная сущность p статически объявлена как многоугольник, а динамически ссылается на прямоугольник? Предположим, что нужно выполнить фрагмент:

create r.make (...) p := r x := p.perimeter

Правило динамического связывания утверждает, что версию применяемой операции определяет динамическая форма объекта. В данном случае это будет perimeterRECT.

Конечно, более интересный случай возникает, когда из текста программы нельзя заключить, какой динамический тип будет иметь p во время выполнения. Например, что будет во фрагменте

-- Вычислить периметр фигуры выбранной пользователем p: POLYGON ... if chosen_icon = rectangle_icon then create {RECTANGLE} p.make (...) elseif chosen_icon = triangle_icon then create {TRIANGLE} p.make (...) elseif ... end ... x := p.perimeter

или после условного полиморфного присваивания if ... then p := r elseif ... then p := t ..., ; или если p является элементом полиморфного массива многоугольников, или если p является формальным аргументом с объявленным типом POLYGON некоторой процедуры, которой вызвавшая ее процедура передала фактический аргумент согласованного типа?

Тогда в зависимости от хода вычисления динамическим типом p будет RECTANGLE, или TRIANGLE, или т.п. У нас нет никакого способа узнать, какой из этих случаев будет иметь место. Но, благодаря динамическому связыванию, этого и не нужно знать: что бы ни случилось с p, при вызове будет выполнен правильный вариант компонента perimeter.


Эта способность операций автоматически приспосабливаться к тем объектам, к которым они применяются, является одной из главных особенностей ОО-систем, непосредственно относящейся к обсуждаемым в начале книги вопросам качества ПО. Ее последствия будут подробней рассмотрены далее в этой лекции.

Динамическое связывание позволяет завершить начатое выше обсуждение аспектов, связанных с потерей информации при полиморфизме. Сейчас стало понятно, почему не страшно потерять информацию об объекте: после присваивания p := q или вызова some_routine (q), в котором p являлся формальным аргументом, теряется специфическая информация о типе q, но если применяется операция p.polygon_feature, для которой polygon_feature имеет специальную версию, применимую к q, то будет выполняться именно эта версия.

Вполне допустимо посылать ваших любимцев в отдел отсутствующих хозяев, который обслуживает все виды, если наверняка известно, что, когда придет время еды, ваш кот получит кошачью еду, а пес - собачью.

Явное переопределение


Роль предложения redefine состоит в улучшении читаемости и надежности. Компиляторам, на самом деле, оно не нужно, так как в классе может быть лишь один компонент с данным именем, то объявленный в данном классе компонент, имеющий то же имя, что и компонент некоторого предка, может быть только переопределением этого компонента (или ошибкой).

Не следует пренебрегать возможностью ошибки, так как программист может наследовать некоторый класс, не зная всех компонентов, объявленных в его предках. Для избежания этой опасности требуется явно указать каждое переопределение. В этом и состоит основная роль предложения redefine, которое также полезно при чтении класса.



Эффективизация компонента


В некоторых собственных потомках класса FIGURE потребуется заменить отложенную версию эффективной. Например,

class POLYGON inherit CLOSED_FIGURE feature rotate (center: POINT; angle: REAL) is -- Повернуть на угол angle вокруг точки center. do ... Команды для поворота всех вершин ... end ... end

Заметим, что POLYGON наследует компоненты класса FIGURE не непосредственно, а через класс CLOSED_FIGURE, в котором процедура rotate остается отложенной.

Этот процесс обеспечения реализацией отложенного компонента называется эффективизацией (effecting). (Эффективный компонент - это компонент, снабженный реализацией.)

Не нужно в предложении redefine некоторого класса описывать отложенные компоненты, получающие реализацию, поскольку у них не было настоящего определения в месте объявления. В этом классе просто помещаются определения таких компонентов, совместимые по типам с их первоначальными объявлениями как, например, в случае компонента rotate.

Задание реализации компонента, конечно, близко к его переопределению и, за исключением включения в предложении redefine, подчиняется тем же правилам. Поэтому нужен общий термин.

Определение: повторное объявление

Повторное объявление компонента - означает определение или переопределение его реализации.

Разница между этими двумя формами повторного объявления хорошо иллюстрируется примерами, приведенными при их определении:

При переходе от POLYGON к RECTANGLE компонент perimeter уже реализован у родителя, и мы хотим предложить новую его реализацию в классе RECTANGLE. Это переопределение. Заметим, что этот компонент еще раз переопределяется в классе SQUARE.При переходе от FIGURE к POLYGON у родителя нет реализации компонента rotate, и мы хотим реализовать его в классе POLYGON. Это эффективизация. Собственные потомки POLYGON могут, конечно, переопределить эту эффективную версию.

Может появиться нужда в некотором изменении параметров наследуемого отложенного компонента, после которого оно все так же останется отложенным. Эти изменения могут затрагивать сигнатуру компонента - типы ее аргументов и результата - и его утверждения (точные ограничения будут указаны в следующей лекции). В отличие от перехода от отложенного компонента к эффективному, такой переход от отложенного к отложенному рассматривается как переопределение и требует предложения redefine. Приведем резюме четырех возможных случаев нового объявления:

Таблица 14.1. Эффекты повторного объявления

Повторное объявление компонента кПовторное объявление компонента отОтложенныйЭффективныйОтложенныйЭффективный
ПереопределениеОтмена определения
ЭффективизацияПереопределение

В этой таблице имеется один еще не рассмотренный случай: отмена определения - переход от эффективного компонента к отложенному. При этом отменяется исходная реализация и начинается новая жизнь.



Экземпляры


С введением полиморфизма нам требуется уточнить терминологию, связанную с экземплярами. Содержательно, экземпляры класса - это объекты времени выполнения, построенные в соответствии с определением класса. Но сейчас в этом качестве нужно также рассматривать объекты, построенные для собственных потомков класса. Вот более точное определение:

Определение: прямой экземпляр, экземпляр

Прямой экземпляр класса C - это объект, созданный в соответствии с точным определением C с помощью команды создания create x ..., в которой цель x имеет тип C (или, рекурсивно, путем клонирования прямого экземпляра C).

Экземпляр C - это прямой экземпляр потомка C.

Из последней части этого определения следует, что прямой экземпляр класса C является также экземпляром C, так как класс входит во множество своих потомков.

Таким образом, выполнение фрагмента:

p1, p2: POLYGON; r: RECTANGLE ... create p1 ...; create r ...; p2 := r

создаст два экземпляра класса POLYGON, но лишь один прямой экземпляр (тот, который присоединен к p1). Другой объект, на который указывают p2 и r, является прямым экземпляром класса RECTANGLE, а следовательно, экземпляром обоих классов POLYGON и RECTANGLE.

Хотя понятия прямого экземпляра и экземпляра определены выше для классов, они естественно распространяются на любые типы (с базовым классом и возможными родовыми параметрами).

Полиморфизм означает, что элемент некоторого типа может присоединяться не только к прямым экземплярам этого типа, но и к другим его экземплярам. Можно считать, что роль правила согласования типов состоит в обеспечении следующего свойства:

Статико-динамическая согласованность типов

Сущность типа T может во время исполнения прикрепляться только к экземплярам класса T.



Ключевые концепции


С помощью наследования можно определять новые классы как расширение, специализацию и комбинацию ранее определенных классов.Класс, наследующий другому классу, называется его наследником, а исходный класс - его родителем. Распространенные на произвольное число уровней (включая ноль) эти понятия становятся понятиями потомка и предка.Наследование является ключевым методом как для повторного использования, так и для расширяемости.Плодотворное применение наследования требует переопределения (предоставления классу возможности переписать реализацию некоторых компонентов его собственного предка), полиморфизма (возможности связывать ссылку во время выполнения с экземплярами разных классов), динамического связывания (динамического выбора подходящего варианта переопределенного компонента), совместности типов (требования, чтобы всякая сущность могла присоединяться только к экземплярам типов-наследников).С точки зрения модулей наследник расширяет набор служб, предоставляемых его родителями. В частности, это полезно для повторно использования.С точки зрения типов отношение между наследником и его родителем - это отношение "является". Оно полезно как для повторного использования, так и для расширяемости.Функцию без аргументов можно переопределить как атрибут, но не наоборот.Методы наследования, в особенности, динамическое связывание, позволяют разрабатывать децентрализованную архитектуру, в которой каждый вариант операции определяется в том же модуле, где описан соответствующий вариант структуры данных.Для типизированных языков динамическое связывание можно реализовать с малыми накладными расходами. Связанные с ним оптимизации, в частности, применяемое компилятором статическое связывание и подстановка кода, помогают ОО-программам достичь или превзойти эффективность выполнения традиционных программ.Отложенные классы содержат один или более отложенный (не реализованный) компонент. Они описывают частичные реализации абстрактных типов данных.Способность эффективных подпрограмм вызывать отложенные позволяет примирить с помощью "классов поведения" повторное использование с расширяемостью.Отложенные классы являются основным средством, используемым ОО-методами на стадиях анализа и проектирования.Утверждения, применяемые к отложенным компонентам, позволяют точно специфицировать отложенные классы.Если семантики динамического и статического связывания различны, то всегда нужно выбирать динамическое связывание. Если же они действуют одинаково, то статическое связывание следует рассматривать как оптимизацию, которую лучше возложить на компилятор. Компилятор может проверить и безопасно применить как эту оптимизацию, так и оптимизацию, связанную с подстановкой кода подпрограммы в точках вызова.



Кнопка под другим именем: когда статическое связывание ошибочно


К этому моменту должен стать понятным главный вывод из изложенных в этой лекции принципов наследования:

Принцип динамического связывания

Если результат статического связывания не совпадает с результатом динамического связывания, то такое статическое связывание семантически некорректно.

Рассмотрим вызов x.r. Если x объявлена типа A, но в процессе вычисления была присоединена к объекту типа B, а в классе B компонент r переопределен, то использование в этом вызове исходной версии r из класса A - это не вопрос выбора, это просто ошибка!

Безусловно, имелись причины для переопределения r. Одной из них могла быть оптимизация, как в случае с компонентом perimeter в классе RECTANGLE, но могло также оказаться, что исходная версия r просто некорректно работает для объектов из B. Рассмотрим, например, эскизно описанный класс BUTTON (КНОПКА), являющийся наследником класса WINDOW (ОКНО) в некоторой оконной системе (кнопки являются специальным видом окон). В этом классе переопределена процедура display, так как изображение кнопки немного отличается от изображения обычного окна (например, нужно показать ее рамку). В этом случае, если w имеет объявленный тип WINDOW, но динамически связана, благодаря полиморфизму, с объектом типа BUTTON, то вызов w.display должен исполняться для "кнопочной" версии! Использование display из класса WINDOW приведет к искажению изображения на экране.

Мы не должны позволить, чтобы нас обманула гибкость системы типов, основанная на наследовании, особенно ее правило совместимости типов, позволяющее объявлять сущность на уровне абстракции более высоком, чем уровень типа присоединенного объекта во время конкретного выполнения. Во время выполнения программы единственное, что имеет значение, - это те объекты, к которым применяются компоненты, а сущности - имена в тексте программы - уже давно забыты. Кнопка под любым именем остается кнопкой, независимо от того, названа ли она в программе кнопкой или присоединена к сущности типа окно.

Это рассуждение можно подкрепить некоторым математическим анализом.
Напомним условие корректности процедуры из лекции 11 об утверждениях:

{prer (xr) and INV} Bodyr {postr (xr) and INV}.

Для целей нашего обсуждения его можно немного упростить, оставив только часть, относящуюся к инвариантам классов, опустив аргументы и используя в качестве индекса имя класса A:

[A-CORRECT]

{INVA} rA {INVA}

Содержательно это означает, что всякое выполнение процедуры r из класса A сохраняет инвариант этого класса. Предположим теперь, что мы переопределили r в некотором собственном потомке B. Соответствующее свойство будет выполняться, если новый класс корректен:

[B-CORRECT]

{INVB} rB {INVB}

Напомним, что инварианты накапливаются при движении вниз по структуре наследования, так что INVB влечет INVA, но, как правило, не наоборот.


Рис. 14.14.  Версия родителя может не удовлетворять новому инварианту

Напомним, например, как RECTANGLE добавляет собственные условия к инварианту класса POLYGON. Другой пример, рассмотренный при изучении инвариантов в лекции 11, это класс ACCOUNT1 с компонентами withdrawals_list и deposits_list; его собственный потомок ACCOUNT2 добавляет к нему, возможно, по соображениям эффективности, новый атрибут balance для постоянного запоминания текущего баланса счета. К инварианту добавляется новое предложение:

consistent_balance: deposits_listltotal - withdrawals_listltotal = current_balance

Из-за этого, возможно, придется переопределить некоторые из процедур класса ACCOUNT1; например, процедура deposit, которая использовалась просто для добавления элемента в список deposits_list, сейчас должна будет модифицировать также balance. Иначе класс просто станет ошибочным. Это аналогично тому, что версия процедуры display из класса WINDOW не является корректной для экземпляра класса BUTTON.

Предположим теперь, что к объекту типа B, достижимому через сущность типа A, применяется статическое связывание. При этом из-за того, что соответствующая версия процедуры rA , как правило, не будет поддерживать необходимый инвариант (как, например, depositACCOUNT1 для объектов типа ACCOUNT2 или displayWINDOW для объектов типа BUTTON), будет получаться неверный объект (например, объект класса ACCOUNT2 с неправильным полем balance или объект класса BUTTON, неправильно показанный на экране).

Такой результат - объект, не удовлетворяющий инварианту своего класса, т.е. основным, универсальным ограничениям на все объекты такого вида - является одним из самых страшных событий, которые могут случиться во время выполнения программы. Если такая ситуация может возникнуть, то нечего надеяться на верный результат вычисления.

Суммируем: статическое связывание является либо оптимизацией, либо ошибкой. Если его семантика совпадает с семантикой динамического связывания (как в случаях (1) и (2)), то оно является оптимизацией, которую может выполнить компилятор. Если у него другая семантика, то это ошибка.


Когда хочется задать тип принудительно


В некоторых случаях нужно выполнить присваивание, не соответствующее структуре наследования, и допустить, что при этом в качестве результата не обязательно будет получен объект. Такого, обычно, не бывает, когда ОО-метод применяется к объектам, внутренним для некоторой программы. Но можно, например, поучить по сети объект с его объявленным типом, и поскольку нет возможности контролировать источник происхождения этого объекта, то объявления статических типов ничего не гарантируют и прежде, чем использовать объект, необходимо проверить его тип.

При получении коробки с надписью "Животное" вместо ожидаемой надписи "Собака", можно соблазниться и все же ее открыть, зная, что, если внутри будет не собака, то потеряется право на возврат посылки и, в зависимости от того, что из нее появится, можно лишиться даже возможности рассказать эту историю.

В таких случаях требуется новый механизм - попытка присваивания, который позволит писать команду вида r ?= p (где ?= обозначает символ попытки присваивания, в отличие от := для обычного присваивания), означающую "выполнить присваивание, если тип объекта соответствует r, а иначе сделать r пустым". Но мы пока не готовы понять, как такая команда сочетается с ОО-методом, поэтому вернемся к этому вопросу в следующих лекциях. (А до того, считайте, что вы ничего об этом не читали).



Многоугольники


Предположим, что требуется построить графическую библиотеку. Ее классы будут описывать геометрические абстракции: точки, отрезки, векторы, круги, эллипсы, многоугольники, треугольники, прямоугольники, квадраты и т. п.

Рассмотрим вначале класс, описывающий многоугольники. Операции будут включать вычисление периметра, параллельный перенос и вращение. Этот класс может выглядеть так:

indexing description: "Многоугольники с произвольным числом вершин" class POLYGON creation ... feature -- Доступ count: INTEGER -- Число вершин perimeter: REAL is -- Длина периметра do ... end feature -- Преобразование display is -- Вывод многоугольника на экран. do ... end rotate (center: POINT; angle: REAL) is -- Поворот на угол angle вокруг точки center. do ... См. далее ... end translate (a, b: REAL) is -- Сдвиг на a по горизонтали, на b по вертикали. do ... end ... Объявления других компонентов ... feature {NONE} -- Реализация vertices: LINKED_LIST [POINT] -- Список вершин многоугольника invariant same_count_as_implementation: count = vertices.count at_least_three: count >= 3 -- У многоугольника не менее трех вершин (см. упражнение У14.2) end

Атрибут vertices задает список вершин, выбор линейного списка - это лишь одно из возможных представлений (массив мог бы оказаться лучше).

Приведем реализацию типичной процедуры rotate. Эта процедура осуществляет поворот на заданный угол вокруг заданного центра поворота. Для поворота многоугольника достаточно повернуть по очереди каждую его вершину.

rotate (center: POINT; angle: REAL) is -- Поворот вокруг точки center на угол angle. do from vertices.start until vertices.after loop vertices.item.rotate (center, angle) vertices.forth end end

Чтобы понять эту процедуру заметим, что компонент item из LINKED_LIST возвращает значение текущего элемента списка. Поскольку vertices имеют тип LINKED_LIST [POINT], то vertices.item обозначает точку, к которой можно применить процедуру поворота rotate, определенную для класса POINT в предыдущей лекции.
Это вполне корректно и достаточно общепринято - давать одно и то же имя (в данном случае rotate), компонентам разных классов, поскольку результирующее множество каждого из них имеет свой явно определенный тип. (Это ОО-форма перегрузки.)

Более важна для наших целей процедура вычисления периметра многоугольника. Единственный способ вычислить периметр многоугольника - это в цикле пройти по всем его вершинам и просуммировать длины всех ребер. Вот возможная реализация процедуры perimeter:

perimeter: REAL is -- Сумма длин ребер local this, previous: POINT do from vertices.start; this := vertices.item check not vertices.after end -- Следствие условия at_least_three until vertices.is_last loop previous := this vertices.forth this := vertices.item Result := Result + this.distance (previous) end Result := Result + this.distance (vertices.first) end

В этом цикле просто последовательно складываются расстояния между соседними вершинами. Функция distance была определена в классе POINT. Значение Result, возвращаемое этой функцией, при инициализации получает значение 0. Из класса LINKED_LIST используются следующие компоненты: first дает первый элемент списка, start сдвигает курсор, на этот первый элемент, forth передвигает его на следующий, item выдает значение элемента под курсором, is_last определяет, является ли текущий элемент последним, after узнает, что курсор оказался за последним элементом. Как указано в команде check инвариант at_least_three обеспечивает правильное начало и завершение цикла. Он стартует в состоянии not after, в котором элемент vertices.item определен. Допустимо применение forth один или более раз, что, в конце концов, приведет в состояние, удовлетворяющее условию выхода из цикла is_last.


Многоугольники и прямоугольники


Для объяснения основных понятий рассмотрим простой пример. Здесь приведен скорее набросок этого примера, а не полный его вариант, но он хорошо показывает все существенные идеи.



Может ли быть польза от неведения?


Поскольку введенные только что понятия играют важную роль в последующем, стоит еще раз повторить несколько последних положений. (На самом деле, в этом коротком пункте не будет ничего нового, но он поможет лучше понять основные концепции и подготовит к введению новых понятий).

Если вы все еще испытываете неудобство от невозможности написать p.diagonal после присваивания p :=r (в случае (2)), то вы не одиноки. Это шокирует многих людей, когда они впервые сталкиваются с этими понятиями. Мы знаем, что p - это прямоугольник, почему же у нас нет доступа к его диагонали? По той причине, что это было бы бесполезно. После полиморфного присваивания, как показано на следующем фрагменте из предыдущего рисунка, один и тот же объект типа RECTANGLE имеет два имени: имя многоугольника p и прямоугольника r.


Рис. 14.7.  После полиморфного присваивания

В таком случае, поскольку известно, что объект O2 является прямоугольником и доступен через имя прямоугольника r, зачем пытаться использовать доступ к его диагонали посредством операции p.diagonal? Это не имеет смысла, так как можно просто написать r.diagonal, использовав официальное имя прямоугольника и сняв все сомнения в правомерности применения его операций. Использование имени многоугольника p, которое может с тем же успехом обозначать треугольник, ничего не дает и приводит к неопределенности.

Действительно, полиморфизм теряет информацию: когда в результате присваивания p :=r появляется возможность ссылаться на прямоугольник O2 через имя многоугольника p, то теряется нечто важное - возможность использовать специфические компоненты прямоугольника. В чем тогда польза? В данном случае - ни в чем. Как уже отмечалось, интерес возникает, когда заранее неизвестно, каков будет вид многоугольника p после выполнения команды if some_condition then p:= r else p := something_else ... или когда p является формальным аргументом процедуры и неизвестно, каков будет тип фактического аргумента. Но в этих случаях было бы некорректно и опасно применять к p что-либо кроме компонентов класса POLYGON.

Продолжая тему животных, представим, что некто спрашивает: "У вас есть домашний любимец?" и вы отвечаете: "Да, кот!". Это похоже на полиморфное присваивание - один объект известен под двумя именами разных типов: "мой_домашний_любимец" и "мой_кот" обозначают сейчас одно животное. Но они не служат одной цели, первое имя является менее информативным, чем второе. Можно одинаково успешно использовать оба имени при звонке в отдел отсутствующих хозяев компании Любимцы-По-Почте ("Я собираюсь в отпуск, сколько будет стоить наблюдение за моим_домашним_любимцем (или: моим_котом) в течение двух недель?") Но при звонке в другой отдел с вопросом: "Могу ли я привезти во вторник моего домашнего любимца, чтобы отстричь когти?", вы не запишетесь на прием, пока не уточните, что имели в виду своего кота.



Наследование и децентрализация


Имея динамическое связывание, можно создавать децентрализованные архитектуры ПО, необходимые для достижения целей повторно использования и расширяемости. Сравним ОО-подход, при котором самодостаточные классы предоставляют свои множества вариантов операций, с классическими подходами. В Паскале или Аде можно использовать тип записи с вариантами

type FIGURE = record "Общие поля" case figtype: (polygon, rectangle, triangle, circle,...) of polygon: (vertices: LIST_OF_POINTS; count: INTEGER); rectangle: (side1, side2: REAL;...); ... end

чтобы определить различные виды фигур. Но это означает, что всякая программа, которая должна работать с фигурами (поворачивать и т.п.) должна проводить разбор возможных случаев:

case f.figure_type of polygon: ... circle: ... ... end

В случае таблиц процедура search должна была бы использовать ту же структуру. Неприятность состоит в том, что эти процедуры должны обладать чересчур большими знаниями о будущем всей системы: они должны точно знать, какие типы фигур в ней допускаются. Любое добавление нового типа или изменение существующего будет затрагивать каждую процедуру.

Ne sutor ultra crepidam, (для сапожника ничего сверх сандалий) - это принцип разработки ПО: процедуре поворота не требуется знать полный список типов фигур. Ей должно хватать информации необходимой для выполнения своей работы: поворота некоторых видов фигур.

Распределение информации среди чересчур большого количества процедур является главным источником негибкости классических подходов к разработке ПО. Основные трудности модификации ПО можно проследить, анализируя эту проблему. Она также частично объясняет, почему так трудно управлять программными проектами, когда совсем небольшие изменения имеют далеко идущие последствия, заставляя разработчиков переделывать модули, которые, казалось бы, были успешно завершены.

ОО-методы также сталкиваются с этой проблемой. Изменение реализации операции затрагивает только тот класс, в котором применяется эта реализация. Добавление нового варианта некоторого типа в большинстве случаев не затронет другие классы. Причиной является децентрализация: классы заведуют своими собственными реализациями и не вмешиваются в дела друг друга. В применении к людям это звучало бы как Вольтеровское Cultivez votre jardin, - ухаживайте за своим собственным садом. В применении к модулям существенным является требование получения децентрализованных структур, которые изящно поддаются расширению, модификации, комбинированию и повторному использованию.



Наследование и конструкторы


Ранее не показанная процедура создания (конструктор) для класса POLYGON может иметь вид

make_polygon (vl: LINKED_LIST [POINT]) is -- Создание по вершинам из vl. require vl.count >= 3 do ...Инициализация представления многоугольника по элементам из vl ... ensure -- vertices и vl состоят из одинаковых элементов (это можно выразить формально) end

Эта процедура берет список точек, содержащий по крайней мере три элемента, и использует его для создания многоугольника.

Ей дано собственное имя make_polygon, чтобы избежать конфликта имен при ее наследовании классом RECTANGLE, у которого имеется собственная процедура создания make. Мы не рекомендуем так делать в общем случае, в следующей лекции будет показано, как давать процедуре создания класса POLYGON стандартное имя make, а затем использовать переименование в предложении о наследовании класса RECTANGLE, чтобы предотвратить коллизию имен.

Приведенная выше процедура создания класса RECTANGLE имеет четыре аргумента: точку, служащую центром, длины двух сторон и ориентацию. Отметим, что компонент vertices применим к прямоугольникам, поэтому процедура создания для RECTANGLE создает список вершин vertices (четыре угла вычисляются по центру, длинам сторон и ориентации).

Общая процедура создания для многоугольников не удобна прямоугольникам, так как приемлемы только списки из четырех элементов, удовлетворяющих инварианту класса RECTANGLE. Процедура создания для прямоугольников, в свою очередь, не годится для произвольных многоугольников. Это обычное дело: процедура создания родителя не подходит для наследника. Нельзя гарантировать, что она будет удовлетворять его новому инварианту.

Например, если у наследника имеются новые атрибуты, то процедуре создания нужно будет их инициализировать, для чего потребуются дополнительные аргументы. Отсюда общее правило:

Правило наследования конструктора

При наследовании свойство процедуры быть конструктором не сохраняется.

Наследуемая процедура создания все еще доступна в наследнике, как и любой другой компонент родителя, но она не сохраняет статус конструктора. Этим статусом обладают только процедуры, перечисленные в предложении creation наследника.

В некоторых случаях родительский конструктор подходит и для наследника. Тогда его просто нужно указать в предложении creation:

class B inherit A creation make feature ...

где процедура make наследуется без изменений от класса A, у которого она также указана в предложении creation.



Наследование инварианта


Хотелось бы указать инвариант класса RECTANGLE, который говорил бы, что число сторон прямоугольника равно четырем и что длины сторон последовательно равны side1, side2, side1 и side2.

У класса POLYGON также имеется инвариант, который применим и к его наследнику:

Правило наследования инварианта

Инвариант класса является конъюнкцией утверждений из его раздела invariant и свойств инвариантов его родителей (если таковые имеются).

Поскольку у родителей класса могут быть свои родители, то это правило рекурсивно: в результате полный инвариант класса получается как конъюнкция собственного инварианта и инвариантов классов всех его предков.

Это правило отражает одну из важных характеристик наследования: сказать, что B наследует A - это утверждать, что каждый экземпляр B является также экземпляром A. Вследствие этого всякое выраженное инвариантом ограничение целостности, применимое к экземплярам A, будет также применимо и к экземплярам B.

В нашем примере второе предложение (at_least_three) инварианта POLYGON утверждает, что число сторон должно быть не менее трех, оно является следствием предложения four_sides из инварианта класса RECTANGLE, которое требует, чтобы сторон было ровно четыре.



Назад к абстрактным типам данных


Насыщенные утверждениями отложенные классы хорошо подходят для представления АТД. Прекрасный пример - отложенный класс для стеков. Мы уже описывали процедуру put, сейчас приведем возможную версию полного описания этого класса.

indexing description: "Стеки (распределительные структуры с дисциплиной Last-in, First-Out), % %не зависящие от выбора представления" deferred class STACK [G] feature -- Доступ count: INTEGER is -- Число элементов. deferred end item: G is -- Последний вставленный элемент. require not_empty: not empty deferred end feature - Отчет о статусе empty: BOOLEAN is -- Стек пустой? do Result := (count = 0) end full: BOOLEAN is -- Стек заполнен? deferred end feature - Изменение элемента put (x: G) is -- Втолкнуть x на вершину. require not full deferred ensure not_empty: not empty pushed_is_top: item = x one_more: count = old count + 1 end remove is -- Вытолкнуть верхний элемент. require not empty deferred ensure not_full: not full one_less: count = old count - 1 end change_top (x: T) is -- Заменить верхний элемент на x require not_empty: not empty do remove; put (x) ensure not_empty: not empty new_top: item = x same_number_of_items: count = old count end wipe_out is -- Удалить все элементы. deferred ensure no_more_elements: empty end invariant non_negative_count: count >= 0 empty_count: empty = (count = 0) end

Этот класс показывает, как можно реализовать эффективную процедуру, используя отложенные: например, процедура change_top реализована в виде последовательных вызовов процедур remove и put. (Такая реализация для некоторых представлений, например, для массивов, может оказаться не самой лучшей, но эффективные потомки класса STACK могут ее переопределить.)

Если сравнить класс STACK со спецификацией соответствующего АТД, приведенной в лекции 6, то обнаружится удивительное сходство. Подчеркнем, в частности, соответствие между функциями АТД и компонентами класса, и между пунктом PRECONDITIONS и предусловиями процедур. Аксиомы представлены в постусловиях процедур и в инварианте класса.


Добавление операций change_top, count и wipe_out в данном случае несущественно, так как они легко могут быть включены в спецификацию АТД (см. упражнение У6.8). Отсутствие явного эквивалента функции new из АТД также несущественно, так как созданием объектов будут заниматься процедуры-конструкторы в эффективных потомках этого класса. Остаются три существенных отличия.

Первое из них - это введение функции full, рассчитанной на реализации с ограниченным числом элементов стека, например, на реализацию массивами. Это типичный пример ограничения, которое несущественно на уровне спецификации, но необходимо для разработки практических систем. Отметим однако, что это отличие между АТД и отложенным классом можно легко устранить, включив в спецификацию АТД средства для охвата ограниченных стеков. При этом общность не будет потеряна, так как некоторые реализации (например, с помощью списков) могут реализовывать full тривиальными процедурами, всегда возвращающими ложь.

Второе отличие, отмеченное при обсуждении разработки по контракту, состоит в том, что спецификация АТД полностью аппликативна (функциональна), она включает функции без побочных эффектов. А отложенный класс, несмотря на его абстрактность, является императивным (процедурным), например put определена как процедура, изменяющая стек, а не как функция, которая берет в качестве аргумента один стек и возвращает другой.

Наконец, как тоже уже отмечалось, механизм утверждений недостаточно выразителен для некоторых аксиом АТД. Из четырех аксиом стеков

Для всех x: G, s: STACK [G],



item (put (s, x)) = x



remove (put (s, x)) = s



empty (new)



not empty (put (s, x))



все, кроме (2), имеют прямые эквиваленты среди утверждений. (Мы предполагаем, что для (3) процедуры-конструкторы у потомков обеспечат выполнение условия empty). Причины таких ограничений уже были объяснены и были намечены возможные пути их преодоления - языки формальных спецификаций IFL.


Не вызывайте нас, мы вызовем вас


Класс SEQUENTIAL_TABLE дает представление о том, как ОО-технология, используя понятие класса поведения, отвечает на последний оставшийся открытым в лекции 4 вопрос о "Факторизации общих поведений".

Особенно интересна возможность определения такой эффективной процедуры в классе поведения, которая использует в своей реализации отложенные процедуры. Эта возможность проиллюстрирована выше процедурой has. Она показывает, как можно использовать частично отложенные классы для того, чтобы зафиксировать общее поведение нескольких вариантов. В отложенном классе описывается только то общее, что у всех них имеется, а описание вариаций остается потомкам.

Ряд примеров в последующих лекциях будет базироваться на этом методе, который играет важную роль в применении ОО-методов к построению повторно используемого ПО. Он особенно полезен при создании библиотек для конкретных предметных областей и реально применяется во многих контекстах. Типичным примером, описанным в [M 1994a], является разработка библиотек Lex и Parse, предназначенных для анализа языков. В частности, Parse определяет общую схему разбора, по которой будет обрабатываться любой текст (формат данных для языка программирования и т.п.), структура которого соответствует некоторой грамматике. Классы поведения высокого уровня содержат небольшое число отложенных компонентов, таких как post_action, описывающих семантические действия, которые должны выполняться после разбора некоторой конструкции. Для определения собственной семантической обработки пользователю достаточно реализовать эти компоненты.

Такая схема широко распространена. В частности, бизнес-приложения часто следуют стандартным образцам - обработать полученные за день счета, выполнить соответствующую проверку требований на платежи, ввести новых заказчиков и так далее, - индивидуальные компоненты которых могут варьироваться.

В таких случаях можно предоставить набор классов поведения со смесью эффективных компонент, описывающих известную часть, и отложенных компонент, задающих изменяемые элементы.
Как правило, эффективные компоненты будут вызывать в своих телах отложенные. При таком подходе потомки могут создавать реализации, удовлетворяющие их потребностям.

Не все изменяемые элементы следует откладывать. Если доступна реализация по умолчанию, то ее следует включить в качестве эффективного компонента, который при необходимости можно переопределить на уровне потомка. Это упростит разработку потомков, так как в них нужно будет реализовывать новые версии лишь тех компонент, которые отличаются от реализаций по умолчанию. Разумеется, такой метод следует применять лишь при наличии подходящей реализации по умолчанию, в противном случае соответствующий компонент следует объявить отложенным (как, например, display в классе FIGURE).
Этот метод является частью более общего подхода, который можно окрестить "Не вызывайте нас, мы вызовем вас": не прикладная система вызывает повторно используемые примитивы, а универсальная схема позволяет разработчикам приложений размещать их собственные варианты в стратегических местах.

Эта идея не является абсолютно новой. Древняя и весьма почтенная СУБД IMS фирмы IBM уже использовала нечто в этом роде. Структура управления графических систем (таких как система X для Unix) включает "цикл по событиям", в котором на каждой итерации вызываются специфические функции, поставляемые разработчиками приложений. Этот подход известен как схема обратного вызова (callback scheme).

То, что предлагает ОО-метод, благодаря классам поведения, представляет систематическую, обеспечивающую безопасность поддержку этой техники разработки. Эта поддержка включает классы, наследование, проверку типов, отложенные классы и компоненты, а также утверждения, позволяющие разработчику сразу зафиксировать, каким условиям должны всегда удовлетворять изменяемые элементы.


Независимость от представления


Динамическое связывание связано с одним из принципиальных аспектов повторного использования: независимостью от представления, т.е. возможностью запрашивать исполнение некоторой операции, имеющей несколько вариантов, не уточняя, какой из них будет применен. В предыдущей лекции при обсуждении этого понятия использовался пример вызова

present := has (x, t)

который должен применить подходящий алгоритм поиска, зависящий от вида t во время выполнения. Если t объявлена как таблица, но может присоединяться к экземпляру бинарного дерева поиска, хеш-таблице и т. п. (в предположении, что все необходимые классы доступны), то при динамическом связывании вызов

present := t.has (x)

найдет во время выполнения подходящую версию процедуры has. С помощью динамического связывания достигается то, что было невозможно получить с помощью перегрузки и универсальности: клиент может запросить некоторую операцию, а поддерживающая язык система автоматически найдет ее соответствующую реализацию.

Таким образом, объединение классов, наследования, переопределения, полиморфизма и динамического связывания дает прекрасные ответы на вопросы, поставленные в начале этой книги: требования повторного использования, критерии, принципы и правила модульности.



Обоснованы ли ограничения?


Приведенные выше правила типизации могут иногда показаться слишком строгими. Например, второй оператор в обоих случаях статически отвергается:

p:= r; r := p

p := r; x := p.diagonal

В (1) запрещается присваивать многоугольник сущности-прямоугольнику, хотя во время выполнения так получилось, что этот многоугольник является прямоугольником (аналогично тому, как можно отказаться принять собаку из-за того, что на клетке написано "животное"). В (2) компонент diagonal оказался не применим к p несмотря на то, что во время выполнения он, фактически, присутствует.

Но более аккуратный анализ показывает, что наши правила вполне обоснованы. Если ссылка присоединяется к объекту, то лучше избежать будущих проблем, убедившись в том, что их типы согласованы. А если хочется применить некоторую операцию прямоугольника, то почему бы сразу не объявить цель прямоугольником?

На практике, случаи вида (1) и (2) маловероятны. Присваивания типа p:= r обычно встречаются внутри некоторых управляющих структур, которые зависят от условий, определяемых во время выполнения, например, от ввода данных пользователем. Более реалистичная полиморфная схема может выглядеть так:

create r.make (...); ... screen.display_icons -- Вывод значков для разных многоугольников screen.wait_for_mouse_click -- Ожидание щелчка кнопкой мыши x := screen.mouse_position -- Определение места нажатия кнопки chosen_icon := screen.icon_where_is (x) -- Определение значка, -- на котором находится указатель мыши if chosen_icon = rectangle_icon then p := r elseif ... p := "Многоугольник другого типа" ... end ... Использование p, например, p.display, p.rotate, ...

В последней строке p может обозначать любой многоугольник, поэтому можно к нему применять только общие компоненты из класса POLYGON. Понятно, что операции, подходящие для прямоугольников, такие как diagonal, должны применяться только к r (например, в первом предложении if). Если придется использовать p в операторах, следующих за оператором if, то к нему могут применяться лишь операции, применимые ко всем видам многоугольников.

В другом типичном случае p просто является формальным параметром процедуры:

some_routine (p: POLYGON) is ...

и можно выполнять вызов some_routine (r), корректный в соответствии с правилом согласования типов. Но при написании процедуры об этом вызове еще ничего не известно. На самом деле, вызов some_routine (t) для t типа TRIANGLE или любого другого потомка класса POLYGON будет также корректен, таким образом, можно считать, что p представляет некоторый вид многоугольников - любой из их видов. Тогда вполне разумно, что к p применимы только компоненты класса POLYGON.

Таким образом, в случае, когда невозможно предсказать точный тип присоединяемого объекта, полиморфные сущности (такие как p) весьма полезны.



Обратного пути нет


Можно было бы ожидать, что допустимо и обратное переопределение атрибута в функцию без аргументов. Но нет. Присваивание - операция применимая к атрибутам, - становится бессмысленной для функций. Предположим, что a - это атрибут класса C, и некоторая подпрограмма содержит команду

a := some_expression

Если потомок C переопределит a как функцию, то эта функция будет не применима, поскольку нельзя использовать функцию в левой части присваивания.

Отсутствие симметрии (допустимо изменять объявление функции на объявление атрибута, но не наоборот) неприятно, но неизбежно и не является на практике серьезным препятствием. Оно означает, что объявление некоторого компонента атрибутом является окончательным и необратимым выбором, в то время как объявление его функцией все еще оставляет место для последующих реализаций через память, а не через вычисление.



Оценка накладных расходов


Оказывается, можно грубо оценить потери на накладные расходы для описанных выше методов динамического связывания. Следующие цифры взяты из опытов ISE по использованию динамического связывания (данные получены при отключении объясняемой ниже оптимизации статического связывания).

Для процедуры, которая ничего не делает, т. е. описана как p1 is do end, превышение времени динамического связывания над временем статического связывания (например, над эквивалентной процедурой на C) составляет около 30%.

Это, конечно, оценка сверху, поскольку реальные процедуры что-нибудь да делают. Цена динамического связывания одинакова для всех процедур независимо от времени их выполнения, поэтому, чем больший объем вычислений выполняет процедура, тем меньше относительная доля накладных расходов. Если вместо p1 использовать процедуру, которая выполняет некоторые типичные операции, такую как

p2 (a, b, c: INTEGER) is local x, y do x := a; y := b + c + 1; x := x * y; p2 if x > y then x := x + 1 else x := x - 1 end end

то накладные расходы падают до 15%. Для программы, выполняющей нечто более существенное (например, некоторый цикл) их доля совсем мала.



О реализации динамического связывания


Может возникнуть опасение, что динамическое связывание - это дорогой механизм, требующий во время выполнения поиска по графу наследования и поэтому накладных расходов, растущих с увеличением глубины этого графа.

К счастью, это не так в случае хорошо спроектированного (и статически типизированного) ОО-языка. Более детально это будет обсуждаться в конце лекции, но мы можем уже сейчас успокоить себя тем, что последствия динамического связывания не будут существенными для эффективности при работе в подходящем окружении.



Основные соглашения и терминология


Кроме терминов "наследник" и "родитель" будут полезны следующие термины:

Терминология наследования

Потомок класса C - это любой класс, который наследует C явно или неявно, включая и сам класс C. (Формально, это либо C, либо, по рекурсии, потомок некоторого наследника C).

Собственный потомок класса C - это потомок, отличный от самого C.

Предок C - это такой класс A, для которого C является потомком. Собственный предок C - это такой класс A, для которого C является собственным потомком.

В литературе также встречаются термины "подкласс" и "суперкласс", но мы не будем их использовать из-за неоднозначности.

Имеется также терминология для компонентов класса: компонент либо является наследуемым (перешедшим от некоторого собственного предка), либо непосредственным (введенным в данном классе).

При графическом представлении структур ОО-ПО, в котором классы изображаются эллипсами, связи по отношению наследования показываются в виде одинарных стрелок. Тем самым они отличаются от связей по отношению "быть клиентом", которые представляются двойными стрелками.


Рис. 14.1.  Связь по наследованию

Переопределяемый компонент отмечается ++ (это соглашение принято в Business Object Notation (B.O.N.)).

Стрелка указывает вверх от наследника к родителю. Это соглашение легко запомнить - оно представляет отношение "наследовать от". В литературе встречается и обратное направление таких стрелок. Хотя обычно выбор графического представления является делом вкуса, в данном случае, одно из них явно лучше другого, поскольку одно наводит на мысль о правильном отношении, а другое может привести к путанице. Стрелка - это не просто произвольная пиктограмма, она указывает на одностороннюю связь между своими двумя концами. В данном случае:

Всякий экземпляр наследника можно рассматривать как экземпляр родителя, а обратное неверно.В тексте наследника всегда упоминается его родитель, но не наоборот. Это, на самом деле, является важным свойством ОО-метода, вытекающим из принципа Открыт-Закрыт, согласно которому класс не "знает" списка своих наследников и других собственных потомков.

Хотя у нас нет жесткого правила, определяющего для достаточно сложных систем размещение классов на диаграммах наследования, мы будем, по возможности, помещать класс выше его наследника.



Отложенные классы


Как мы видели, компонент может быть отложенным или эффективным. То же относится и к классам.

Определение: отложенный класс, эффективный класс

Класс является отложенным, если у него имеется отложенный компонент.

В противном случае, класс является эффективным.

Таким образом, чтобы класс был эффективным, должны быть эффективными все его компоненты. Один или несколько отложенных компонентов делают класс отложенным. В этом случае класс должен содержать специальную метку:

Правило объявления отложенного класса

Объявление отложенного класса должно включать подряд идущие ключевые слова deferred class (в отличие от одного слова class для эффективных классов).

Поэтому класс FIGURE будет объявлен следующим образом:

deferred class FIGURE feature rotate (...) is ... Объявления отложенных компонентов ... ... Объявления других компонентов ... end

Обратно, если класс отмечен как отложенный, то у него должен быть хотя бы один отложенный компонент. При этом класс может быть отложенным, даже если в нем самом не объявлен ни один отложенный компонент, так как у него может быть отложенный родитель, от которого он унаследовал отложенный компонент, не ставший у него эффективным. В нашем примере в классе OPEN_FIGURE, скорее всего, останутся отложенными компоненты display, rotate и многие другие, унаследованные от класса FIGURE, поскольку понятие незамкнутой фигуры не настолько конкретизировано, чтобы поддерживать стандартные реализации этих операций. Поэтому этот класс является отложенным и будет объявлен как

deferred class OPEN_FIGURE inherit FIGURE ...

даже если в нем самом не вводится ни один отложенный компонент.

Потомок отложенного класса является эффективным классом, если все отложенные компоненты его родителей имеют в нем эффективные определения и в нем не вводятся никакие собственные отложенные компоненты. Эффективные классы, такие как POLYGON и ELLIPSE, должны обеспечить реализацию отложенных компонентов display, rotate.

Для удобства мы будем называть тип отложенным, если его базовый класс является отложенным. Таким образом, класс FIGURE, рассматриваемый как тип, является отложенным. Если родовой класс LIST является отложенным (как это и должно быть, если он представляет понятие списка, не зависящее от реализации), то тип LIST [INTEGER] является отложенным. Учитывается только базовый класс: C [X] будет эффективным, если класс C эффективный, и отложенным, если C является отложенным, независимо от статуса X.



Отложенные классы как частичные интерпретации: классы поведения


Не все отложенные классы так близки к АТД как STACK. В промежутке между полностью абстрактным классом, таким как STACK, в котором все существенные компоненты отложены, и эффективным классом, таким как FIXED_STACK, описывающим единственную реализацию АТД, имеется место для реализаций АТД с различной степенью завершенности.

Типичным примером является иерархия реализаций таблиц, которая помогла нам понять роль частичной общности при изучении повторного использования. Первоначальный рисунок, показывающий отношения между вариантами, можно сейчас перерисовать в виде диаграммы наследования.


Рис. 14.13.  Варианты понятия "таблица"

Наиболее общий класс TABLE является полностью или почти полностью отложенным, так как на этом уровне мы можем объявить несколько компонентов, но не можем предложить никакой существенной их реализации. Среди вариантов имеется класс SEQUENTIAL_TABLE, представляющий таблицы, в которые элементы вставляются последовательно. Примерами таких таблиц являются массивы, связанные списки и последовательные файлы. Соответствующие им классы в нижней части рисунка являются эффективными.

Особый интерес представляют такие классы как SEQUENTIAL_TABLE. Этот класс все еще отложенный, но его статус находится посредине между полностью отложенным статусом как у класса TABLE и полностью эффективным как у ARRAY_TABLE. У него достаточно информации, чтобы позволить себе реализацию некоторых специфических алгоритмов, например, в нем можно полностью реализовать последовательный поиск:

has (x: G): BOOLEAN is -- x имеется в таблице? do from start until after or else equal (item, x) loop forth end Result := not after end

Эта функция эффективна, хотя ее алгоритм использует отложенные компоненты. Компоненты start (поместить курсор в первую позицию), forth (сдвинуть курсор на одну позицию), item (значение элемента в позиции курсора), after (находится ли курсор за последним элементом?) являются отложенными в классе SEQUENTIAL_TABLE и в каждом из показанных на рисунке потомков этого класса они реализуются по-разному.


Эти реализации были приведены при обсуждении повторного использования. Например класс ARRAY_TABLE может представлять курсор числом i, так что процедура start реализуется как i := 1, а item как t @ i и т.д.

Отметим важность включения предусловия и постусловия компонента forth, а также инварианта объемлющего класса для гарантирования того, что все будущие реализации будут удовлетворять одной и той же базовой спецификации. Эти утверждения приводились ранее в этой лекции (в несколько ином контексте для класса LIST, но непосредственно применимы и здесь).

Этого обсуждение в полной степени показывает соответствие между классами и АТД:

Полностью отложенный класс, такой как TABLE, соответствует АТД.Полностью эффективный класс, такой как ARRAY_TABLE, соответствует реализации АТД.Частично отложенный класс, такой как SEQUENTIAL_TABLE, соответствует семейству реализаций (или, что эквивалентно, частичной реализации) АТД.

Такой класс как SEQUENTIAL_TABLE, аккумулирующий черты, свойственные нескольким вариантам АТД, можно назвать классом поведения (behavior class). Классы поведения предоставляют важные образцы для конструирования ОО-ПО.


Отложенные компоненты и классы


Полиморфизм и динамическое связывание означают, что в процессе проектирования ПО можно рассчитывать на абстракции и быть уверенными в том, что при выполнении будет выбрана подходящая реализация. Но перед выполнением все должно быть полностью реализовано.

Однако полная реализация не всегда нужна. Частично реализованные или не реализованные абстрактные элементы ПО помогают при решении многих задач: анализе проблемы и проектировании архитектуры системы (в этом случае можно их сохранить в заключительном продукте, чтобы запомнить ход анализа и проектирования), при фиксации соглашений между реализаторами, при описании промежуточных точек в классификации.

Отложенные компоненты и классы обеспечивают необходимый механизм абстракции.



Отложенный компонент


Таким образом, нужен способ спецификации компонентов rotate и translate на уровне класса FIGURE, который возлагал бы обязанность по их фактической реализации на потомков этого класса. Это достигается объявлением этих компонентов как "отложенных". При этом вся часть тела процедуры с командами заменяется ключевым словом deferred. В классе FIGURE будет объявление:

rotate (center: POINT; angle: REAL) is -- Повернуть на угол angle вокруг точки center. deferred end

и аналогично будет объявлен компонент translate. Это означает, что этот компонент известен в том классе, где появилось такое объявление, но его реализации находятся в классах - собственных потомках. В таком случае вызов вида f.rotate в процедуре transform становится законным.

Объявленный таким образом компонент называется отложенным компонентом. Компонент, не являющийся отложенным, - имеющий реализацию (например, любой из ранее встретившихся нам компонентов), называется эффективным.



Парадокс расширения-специализации


Наследование иногда рассматривается как расширение, а иногда как специализация. Хотя эти два толкования как будто противоречат друг другу, оба они истинны - но с разных точек зрения.

Все снова зависит от того, смотрим ли мы на класс как на тип или как на модуль. В первом случае наследование, представляющее отношение "является", - это специализация: "собака" более специальное понятие, чем "животное", а "прямоугольник" - чем "многоугольник". Как уже отмечалось, это соответствует отношению включения подмножества во множество: если B наследник A, то множество объектов, представляющих во время выполнения B является подмножеством соответствующего множества для A.

Но с точки зрения модуля, при которой класс рассматривается как поставщик служб, B реализует службы A и свои собственные. Малому числу объектов часто позволяют иметь больше компонентов, так как это приводит к увеличению информации. Переходя от произвольных животных к собакам, мы можем добавить специфическое для них свойство "лаять", а при переходе от многоугольников к прямоугольникам можно добавить компонент "диагональ". Поэтому по отношению к реализованным компонентам отношение включения направлено в другую сторону: компоненты, применимые к экземплярам A, являются подмножеством компонент, применимых к экземплярам B.

>Здесь мы говорим о реализуемых компонентах, а не о предлагаемых (клиентам) службах, потому что при соединении скрытия информации с наследованием, как мы увидим, B может скрыть от клиентов некоторые из компонентов, в то время как A их экспортировал своим клиентам.

Таким образом, наследование является специализацией с точки зрения типов и расширением с точки зрения модулей. Это и есть парадокс расширения-специализации: чем больше применяемых компонентов, тем меньше объектов, к которым они применяются.

Парадокс расширения-специализации - это одна из причин для устранения термина "подкласс", предполагающего понятие "подмножество". Другой, уже отмеченной, является встречающееся в литературе сбивающее с толку использование термина "подкласс" для обозначения как прямого, так и непрямого наследования. Эти проблемы не возникают при использовании точно определенных терминов: наследник, потомок и собственный потомок и двойственных к ним терминов: родитель, предок и собственный предок.



Переопределение и утверждения


Если клиент класса POLYGON вызывает p.perimeter, то он ожидает получить значение периметра p, определенное спецификацией функции perimeter в определении этого класса. Но теперь, благодаря динамическому связыванию, клиент может вызвать другую программу, переопределенную в некотором классе-потомке. В классе RECTANGLE переопределение улучшает эффективность и не изменяет результат, но что помешало бы переопределить периметр так, чтобы новая версия вычисляла бы, скажем, площадь?

Это противоречит духу переопределения. Переопределение должно изменять реализацию процедуры, а не ее семантику. К счастью, утверждения позволяют ограничить семантику процедур. Неформально, основное правило контроля за переопределением и динамическим связыванием можно сформулировать просто: предусловие и постусловие программы должны быть применимы к любому ее переопределению, и, как мы уже видели, инвариант класса автоматически должен распространяться на всех его потомков.

Точные правила будут приведены ниже. Но уже сейчас можно заметить, что переопределение не является произвольным: допускаются только переопределения, сохраняющие семантику. Это дело автора программы - выразить ее семантику достаточно точно, но оставить при этом свободу для будущих реализаторов.



Подход языка С++ к связыванию


Учитывая широкое распространение и влияние языка С++ на другие языки, нужно разъяснить, как в нем решаются некоторые из обсуждаемых здесь вопросов.

Соглашения, принятые в С++, кажутся странными. По умолчанию связывание является статическим. Чтобы процедура (в терминах С++ - функция или метод) связывалась динамически, она должна быть специально объявлена как виртуальная (virtual).

Это означает, что приняты два решения:

Сделать программиста ответственным за выбор статического или динамического связывания.Использовать статическое связывание в качестве предопределенного.

Оба нарушают ОО-разработку ПО, но в различной степени: (1) можно попробовать объяснить, а (2) защищать трудно.

По сравнению с подходом этой книги (1) ведет к другому пониманию того, какие задачи должны выполняться людьми (разработчиками ПО), а какие - компьютерами (более точно, компиляторами). Это та же проблема, с которой мы столкнулись при обсуждении автоматического распределения памяти. Подход С++ продолжает традиции C и дает программисту полный контроль над тем, что случится во время выполнения, будь то размещение объекта или вызов процедуры. В отличие от этого, в духе ОО-технологии стремление переложить на плечи компилятора все утомительные задачи, выполнение которых вручную приводит к ошибкам, и для которых имеются подходящие алгоритмы. В крупном масштабе и на большом промежутке времени компиляторы всегда справятся с работой лучше.

Конечно, разработчики отвечают за эффективность их программ, но они должны сосредотачивать свои усилия на том, что может действительно существенно повлиять на результат: на выборе подходящих структур данных и алгоритмов. За все остальное несут ответственность разработчики языков и компиляторов.

Отсюда и несогласие с решением (1): С++ считает, что статическое связывание, как и подстановка кода, должно определяться разработчиками, а развиваемый в этой книге ОО-подход полагает, что за это отвечает компилятор, который будет сам оптимизировать вызовы. Статическое связывание - это оптимизация, а не выбор семантики.


Для ОО- метода имеется еще одно негативное последствие (1). Всегда при определении процедуры требуется указать политику связывания: является она виртуальной или нет, т.е. будет связываться динамически или статически. Такая политика противоречит принципу Открыт-Закрыт, так как заставляет разработчика с самого начала угадать, что будет переопределяться, а что - нет. Это не соответствует тому, как работает наследование: на практике может потребоваться переопределить некоторый компонент в далеком потомке класса, при проектировании которого нельзя было это предвидеть. При подходе С++, если разработчик исходного класса такого не предусмотрел, то придется снова вернуться к этому классу, чтобы изменить объявление компонента на virtual. При этом предполагается, что исходный текст доступен для модификации. А если его нет, или у разработчика нет права его менять, то вас ожидает горькая участь.

По этим причинам решение (1), требующее, чтобы программисты сами задавали политику связывания, мешает эффективному применению ОО-метода.

Решение (2) - использовать статическое связывание в качестве предопределенного - еще хуже. Очень трудно подобрать доводы в его пользу с точки зрения проектирования языка. Как мы видели, выбор статического связывания всегда приводит к ошибкам, если его семантика отличается от динамического. Поэтому не может быть никаких причин для его выбора в качестве предопределенного.

Одно дело - сделать программистов, а не компиляторы ответственными за оптимизацию в безопасных случаях (т.е. попросить их явно указывать статическое связывание, если они считают, что это корректно), но заставлять их писать нечто специальное, чтобы получить корректную семантику - это совсем другое. Если верно или неверно понятые соображения эффективности начинают брать верх над основополагающим требованием корректности ПО, то что-то не в порядке.

Даже в языке, заставляющем программиста отвечать за выбор политики связывания (такое решение принято в C), предопределенное значение должно быть противоположным.


Вместо того, чтобы требовать объявлять динамически связываемые функции виртуальными (virtual), язык должен был бы использовать динамическое связывание по умолчанию и разрешить программистам выделять словом static (или каким-нибудь другим) компоненты, для которых они хотели бы запросить оптимизацию, доверив им самим (в традиции C и С++) удостоверяться в том, что она допустима.

Это различие особенно важно для начинающих, которые, естественно, имеют тенденцию доверять значениям по умолчанию. Даже для языка, менее страшного, чем С++, нельзя предполагать, что кто-либо сразу справится со всеми деталями наследования. Ответственный подход к этому должен гарантировать корректную семантику для новичков (и вообще, для разработчиков, начинающих новый проект, которые "хотят чтобы прежде всего он был правильным, а уж затем быстрым"), а затем предоставить возможности оптимизации для тех, кому это требуется и кто хорошо разбирается в предмете.



Имея в виду широко распространенный интерес к "совместимости снизу - вверх", создание комитета для изменения политики связывания в С++, особенно пункта (2), будет тяжелым делом, но стоит попытаться пролить свет на опасность нынешних соглашений.

Прискорбно, но подход С++ влияет и на другие языки, например, политика динамического связывания в языке Borland Delphi, продолжающем прежние расширения Паскаля, по сути, та же, что и в С++. Отметим все же, что вышедший из недр С++ язык Java в качестве базового использует динамическое связывание.
Эти наблюдения позволяют дать некоторый практический совет. Что разработчик может сделать при использовании С++ или иного языка с той же политикой связывания? Самым лучшим для разработчиков, не имеющих возможности переключиться на другие средства или ждать улучшений в этом языке, было бы объявлять все функции как виртуальные и тем самым разрешить их любые переопределения в духе ОО-разработки ПО. (К сожалению, некоторые компиляторы С++ ограничивают число виртуальных функций в системе, но можно надеяться, что эти ограничения будут сняты).



Парадокс этого совета в том, что он возвращает нас назад к ситуации, в которой все вызовы реализуются через динамическое связывание и требуют несколько большего времени выполнения. Иными словами, соглашения (1) и (2) языка С++, предназначенные для улучшения эффективности, в конце концов, если следовать правилу: "корректность прежде всего", срабатывают против этого!

Неудивительно, что эксперты по С++ не советуют использовать "чересчур много" объектной ориентированности. Уолтер Брайт (Walter Bright), автор одного из самых популярных компиляторов С++, пишет в [Bright 1995]:

Хорошо известно, что чем больше С++ [механизмов] вы используете в некотором классе, тем медленнее его код. К счастью, есть несколько вещей, позволяющих склонить чашу весов в вашу пользу. Во-первых, не используйте без большой необходимости виртуальные функции [т. е. динамическое связывание], виртуальные базовые классы [отложенные классы], деструкторы и т.п. Другой источник разбухания - это множественное наследование [...]. Если у вас сложная иерархия классов с одной или двумя виртуальными функциями, то попробуйте устранить виртуальный аспект и, быть может, сделать то же самое, используя проверки и ветвления.
Иными словами: не прибегайте к использованию ОО-методов. ( В том же тексте отстаивается и "группировка всех кодов инициализации" для локализации ссылки - приглашение нарушить элементарные принципы модульного проектирования, которые, как мы видели, предполагают, что каждый класс должен сам отвечать за все, связанное с его инициализацией.)

В этой лекции предложен другой подход: в первую очередь разработчик ОО-ПО должен быть уверен в том, что семантика вызова всегда будет правильной, а это гарантируется динамическим связыванием. Затем можно использовать достаточно изощренные методы компиляции, чтобы порождать статическое связывание или подстановку кода для тех вызовов, которые, как установлено на основе строгого алгоритмического анализа, не требуют динамического связывания.


Полиморфизм


Иерархии наследования позволяют достаточно гибко работать с объектами, сохраняя надежность статической типизации. Поддерживающие их методы: полиморфизм и динамическое связывание - одни из самых фундаментальных аспектов архитектуры ПО, обсуждаемой в этой книге. Начнем с полиморфизма.



Полиморфное присоединение


"Полиморфизм" означает способность обладать несколькими формами. В ОО-разработке несколькими формами обладают сущности (элементы структур данных), способные во время выполнения присоединяться к объектам разных типов, что контролируется статическими объявлениями.

Предположим, что для структуры наследования на рисунке вверху объявлены следующие сущности:

p: POLYGON; r: RECTANGLE; t: TRIANGLE

Тогда допустимы следующие присваивания:

p := r p := t

Эти команды присваивают в качестве значения сущности, обозначающей многоугольник, сущность, обозначающую прямоугольник в первом случае, и сущность, обозначающую треугольник - во втором.

Такие присваивания, в которых тип источника (правой части) отличен от типа цели (левой части), называются полиморфными присваиваниями. Сущность, входящая в полиморфное присваивание слева (в примере это p) является полиморфной сущностью.

До введения наследования все присваивания были мономорфными (не полиморфными): можно было присваивать точку точке, книгу книге, счет счету. С появлением полиморфизма возможных действий становится больше.

Приведенные в примере полиморфные присваивания легитимны, поскольку структура наследования позволяет рассматривать экземпляр класса RECTANGLE или TRIANGLE как экземпляр класса POLYGON. Мы говорим, что в таком случае тип источника согласован с типом цели. В обратном направлении присваивание недопустимо, т.е. некорректно писать r := p. Вскоре это важное правило будет рассмотрено более подробно.

Кроме присваивания, полиморфизм имеет место и при передаче аргументов, например в вызовах вида f (r) или f (t) при условии объявлении компонента f в виде:

f (p: POLYGON) is do ... end

Напомним, что присваивание и передача аргументов имеют одинаковую семантику, и оба называются присоединением (attachment). Когда источник и цель имеют разные типы, можно говорить о полиморфном (polymorphic) присоединении.



Полиморфное создание


Введение наследования и полиморфизма приводит к небольшому расширению механизма создания объектов, который позволит непосредственно создавать объекты типов-потомков.

Напомним, что команды создания (процедуры-конструкторы) имеют один из следующих видов:

create x create x.make (...)

где вторая форма подразумевает и требует, чтобы базовый класс для типа T, приписанного x, содержал предложение creation, в котором make указана как одна из процедур-конструкторов. (Разумеется, процедура создания может иметь любое имя, - make рекомендуется по умолчанию). Результатом выполнения первой команды является создание нового объекта типа T, его инициализация значениями, заданными по умолчанию, и его присоединение к x. А при выполнении второй инструкции для создания и инициализации объекта будет вызываться make с заданными аргументами.

Предположим, что у T имеется собственный потомок U. Мы можем захотеть использовать x полиморфно и присоединить сразу к прямому экземпляру U, а не к экземпляру T. Возможное решение использует локальную сущность типа U.

some_routine (...) is local u_temp: U do ...; create u_temp.make (...); x := u_temp; ... end

Это работает, но чересчур громоздко, особенно в контексте многозначного выбора, когда захочется присоединить x к экземпляру одного из нескольких возможных типов наследников. Локальные сущности (u_temp в нашем примере) играют только временную роль, их объявления и присваивания загромождают текст программы. Поэтому нужны специальные варианты конструкторов:

create {U} x create {U} x.make (...)

Результат должен быть тот же, что и у конструкторов create, приведенных выше, но создаваемый объект должен являться прямым экземпляром U, а не T. Этот вариант должен удовлетворять очевидному ограничению: тип U должен быть согласован с типом T, а во второй форме make должна быть определена как процедура создания в классе, базовом для U, и если этот класс имеет одну или несколько процедур создания, то применима лишь вторая форма. Заметим, что здесь не важно, имеет ли сам класс T процедуры создания, - все зависит только от U.

Типичное применение связано с созданием экземпляра одного из нескольких возможных типов:

f: FIGURE ... "Вывести значки фигур" if chosen_icon = rectangle_icon then create {RECTANGLE} f elseif chosen_icon = circle_icon then create {CIRCLE} f else ... end

Этот новый вид конструкторов объектов приводит к введению понятия тип при создании, обозначающего тип создаваемого объекта в момент его создания конструктором:

Для формы с неявным типом create x ... тип при создании есть тип x.

Для формы с явным типом create {U} x ... тип при создании есть U.



Полиморфные структуры данных


Рассмотрим массив многоугольников:

poly_arr: ARRAY [POLYGON]

Когда некоторое значение x присваивается элементу этого массива, как в вызове

poly_arr.put (x, some_index)

(для некоторого допустимого значения индекса some_index), то спецификация класса ARRAY указывает, что тип присваиваемого значения должен быть согласован с типом фактического родового параметра:

class ARRAY [G] creation ... feature - Изменение элемента put (v: G; i: INTEGER) is -- Присвоить v элементу с индексом i ... end

Так как тип формального аргумента v, соответствующего x, в классе определен как G, а фактический родовой параметр, соответствующий G в вызове poly_arr, - это POLYGON, то тип x должен быть согласован с ним. Как мы видели, для этого x не обязан иметь тип POLYGON, подойдет любой потомок типа POLYGON.

Поэтому, если границы массива равны 1 и 4, то можно объявить некоторые сущности:

p: POLYGON; r: RECTANGLE; s: SQUARE; t: TRIANGLE

и, создав соответствующие объекты, можно выполнить операции

poly_arr.put (p, 1) poly_arr.put (r, 2) poly_arr.put (s, 3) poly_arr.put (t, 4)

которые присвоят элементам массива ссылки на объекты различных типов.


Рис. 14.4.  Полиморфный массив

На этом рисунке графические объекты представлены соответствующими геометрическими фигурами, а не обычными диаграммами объектов с набором их полей.

Такие структуры данных, содержащие объекты разных типов, имеющих общего предка, называются полиморфными структурами данных. Далее будут рассмотрены многочисленные примеры таких структур. Массивы - это только одна из возможностей, полиморфными могут быть любые структуры контейнеров: списки, стеки и т.п.

Полиморфные структуры данных реализуют цель, сформулированную в начале лекции: объединение порождения и наследования для достижения максимальной гибкости и надежности. Имеет смысл напомнить рис. 10.1, иллюстрирующий эту мысль:


Рис. 14.5.  Измерения обобщения

Типы, которые на рис. 10.1 неформально назывались SET_OF_BOOKS и т. п., заменены типами, выведенными из родового универсального типа, - SET [BOOK].

Такая комбинация универсальности и наследования является весьма сильным средством. Оно позволяет описывать структуру объектов с нужной степенью общности. Например,

LIST [RECTANGLE]: может содержать квадраты, но не треугольники.

LIST [POLYGON]: может содержать квадраты, прямоугольники, треугольники, но не круги.

LIST [FIGURE]: может содержать экземпляры любого типа из иерархии FIGURE, но не книги или банковские счета.

LIST [ANY]: может содержать объекты любого типа.

В последнем случае использован класс ANY, который условимся считать предком любого класса (он будет подробнее рассмотрен далее).

Варьируя место класса, выбираемого в качестве фактического родового параметра, в иерархии, можно точно установить границы типов объектов, допустимых в определяемом контейнере.



Повторное объявление функции как атрибута


Повторные объявления позволяют активно применять один из центральных принципов модульности - принцип Унифицированного Доступа (Uniform Access).

Напомним (см. лекцию 3), что этот принцип утверждает (первоначально в менее технических терминах, но сейчас мы можем позволить себе быть более точными), что с точки зрения клиента не должно быть никакой существенной разницы между атрибутом и функцией без аргументов. В обоих случаях компонент является запросом и все, что их отличает, - это их внутреннее представление.

Первым примером этого был класс, описывающий банковские счета, в котором компонент balance мог быть реализован как функция, которая добавляет вклады и вычитает снимаемые суммы, или как атрибут, изменяемый по мере необходимости так, чтобы отражать текущий баланс. Для клиента это было все равно (за исключением, возможно, эффективности).

С появлением наследования можно пойти дальше и позволить, чтобы в классе наследуемая функция была переопределена как атрибут.

Наш прежний пример хорошо подходит для иллюстрации. Пусть имеется класс ACCOUNT1:

class ACCOUNT1 feature balance: INTEGER is -- Текущий баланс do Result := list_of_deposits.total - list_of_withdrawals.total end ... End

Тогда в потомке может быть выбрана вторая реализация из нашего первоначального примера, переопределяющая balance как атрибут:

class ACCOUNT2 inherit ACCOUNT1 redefine balance end feature balance: INTEGER -- Текущий баланс ... end

По-видимому, в классе ACCOUNT2 нужно будет переопределить некоторые процедуры, такие как withdraw и deposit, чтобы, кроме других своих обязанностей они еще модифицировали нужным образом balance, сохраняя в качестве инварианта свойство: balance = list_of_deposits.total - list_of_withdrawals.total.

В этом примере новое объявление является переопределением. Его результатом может также оказаться превращение отложенного компонента в атрибут. Например, пусть в отложенном классе LIST имеется компонент

count: INTEGER is -- Число вставленных элементов deferred end

Тогда в реализации списка этот компонент может быть реализован как атрибут:


count: INTEGER
Если нас попросят применить эту классификацию, чтобы разбить компоненты на атрибуты и подпрограммы, то мы условимся рассматривать отложенный компонент как подпрограмму, несмотря на то, что для отложенного компонента с результатом и без аргументов само понятие отложенности означает, что мы еще не сделали выбор, как его реализовать - функцией или атрибутом. Фраза "отложенный компонент" передает эту неопределенность и предпочтительней фразы "отложенная подпрограмма".
Переобъявление функции как атрибута, объединенное с полиморфизмом и динамическим связыванием, приводят к полной реализации принципа Унифицированного Доступа. Сейчас можно не только реализовать запрос клиента вида a.service либо через память, либо посредством вычисления, но один и тот же запрос в процессе одного вычисления может в одних случаях запустить доступ к некоторому полю, а в других - вызвать некоторую функцию. Это может, в частности, случиться при выполнении одного и того же вызова a.balance, если по ходу вычисления a будет полиморфно присоединяться к объектам разных классов.


Пределы полиморфизма


Неограниченный полиморфизм был бы несовместим со статическим понятием типа. Допустимость полиморфных операций определяется наследственностью.

Все примеры полиморфных присваиваний, такие, как p := r и p := t, в качестве типа источника используют потомков класса-цели. Скажем, что в таком случае тип источника согласован с классом цели. Например, SQUARE согласован с RECTANGLE и с POLYGON, но не с TRIANGLE. Чтобы уточнить это понятие, дадим формальное определение:

Определение: согласованность

Тип U согласован с типом T, только если базовый класс для U является потомком базового класса для T; при этом для универсально порожденных типов каждый фактический параметр U должен (по рекурсии) быть согласован с соответствующим формальным параметром T.

Почему недостаточно понятия потомка в этом определении? Причина снова в том, что допускается порождение из родовых классов, поэтому приходится различать типы и классы. Для каждого типа имеется базовый класс, который при отсутствии порождения совпадает с самим типом (например, POLYGON является базовым для себя). При этом для универсально порожденного класса базовым является универсальный класс с опущенными родовыми параметрами. Например, для класса LIST [POLYGON] базовым будет класс LIST. Вторая часть определения говорит о том, что B [Y] будет согласован с A [X], если B является потомком A, а Y - потомком X.

Заметим, что поскольку каждый класс является собственным потомком, то каждый тип согласован сам с собой.

При таком обобщении понятия потомка получаем второе важное правило типизации:

Правило согласования типов

Присоединение к источнику y цели x (т. е. присваивание x:=y или использование y в качестве фактического параметра в вызове процедуры с соответствующим формальным параметром x) допустимо только тогда, когда тип y согласован с типом x.

Правило согласования типов выражает тот факт, что специальное можно присваивать общему, но не наоборот. Поэтому присваивание p := r допустимо, а r := p нет.

Это правило можно проиллюстрировать следующим образом. Предположим, что я настолько ненормален, что послал в компанию Любимцы-По-Почте заказ на "Animal" ("Животное"). В этом случае, что бы я ни получил: собаку, божью коровку или дельфина-касатку, у меня не будет права пожаловаться. (Предполагается, что DOG и все прочие являются потомками класса ANIMAL). Но если я заказал собаку, а почтальон принес мне утром коробку с надписью ANIMAL, или, например, MAMMAL (млекопитающее), то я имею право вернуть ее отправителю, даже если из нее доносится недвусмысленный лай и тявканье. Поскольку мой заказ не был исполнен в соответствии со спецификацией, я ничего не должен фирме Любимцы-По-Почте.



Пример иерархии


В конце обсуждения полезно рассмотреть пример POLYGON-RECTANGLE в контексте более общей иерархии типов геометрических фигур.


Рис. 14.2.  Иерархия типов фигур

Фигуры разбиты на замкнутые и незамкнутые. Примером замкнутой фигуры кроме многоугольника является также эллипс, а частным случаем эллипса является круг.

Рядом с классами указаны их разные компоненты. Символ "++" означает "переопределено", а символы "+" и "*" будут объяснены далее.

Ранее для простоты RECTANGLE был наследником класса POLYGON. Поскольку указанная классификация основана на числе вершин, то представляется разумным ввести промежуточный класс QUADRANGLE для четырехугольников на том же уровне, что и классы TRIANGLE, PENTAGON и т. п. Тогда компонент diagonal (диагональ) можно переместить на уровень класса QUADRANGLE.

Отметим, что класс SQUARE, наследник класса RECTANGLE, характеризуется инвариантом side1 = side2. Аналогично, у эллипса имеются два фокуса, а у круга они сливаются в один, что определяет инвариант класса CIRCLE: equal (focus1 = focus2).



Прямоугольники


Предположим теперь, что нам требуется новый класс, представляющий прямоугольники. Можно было бы начать его проектировать заново. Но прямоугольники это специальный вид многоугольников и у них много общих компонент: их также можно сдвигать, поворачивать и выводить на экран. С другой стороны, у них есть ряд специфических компонентов (например, диагонали), специальные свойства (число вершин равно четырем, а углы являются прямыми) и возможны специальные варианты некоторых операций (вычисление периметра можно устроить проще, чем в приведенном выше алгоритме).

Преимущества такой смеси общих и специфических компонентов можно использовать, определив класс RECTANGLE как наследника (heir) класса POLYGON. При этом все компоненты класса POLYGON, называемого родителем (parent) класса RECTANGLE, по умолчанию будут применимы и к классу-наследнику. Для этого достаточно включить в RECTANGLE предложение наследования (inheritance clause):

class RECTANGLE inherit POLYGON feature ... Компоненты, специфичные для прямоугольников ... end

В предложении feature класса-наследника компоненты родителя не повторяются: они автоматически доступны благодаря предложению о наследовании. В нем будут указаны лишь компоненты, специфичные для наследника. Это могут быть новые компоненты, такие как diagonal, а также переопределяемые наследуемые компоненты.

Вторая возможность полезна для такого компонента, который уже имелся у родителя, но у наследника должен быть описан в другом виде. Рассмотрим периметр perimeter. Для прямоугольников его можно вычислить более эффективно: не нужно вычислять четыре длины сторон, достаточно удвоить сумму длин двух сторон. Наследник, переопределяющий некоторый компонент родителя, должен объявить об этом в предложении наследования, включив предложение redefine:

class RECTANGLE inherit POLYGON redefine perimeter end feature ... end

Это позволяет включить в предложение feature класса RECTANGLE новую версию компонента perimeter, которая заменит его версию из класса POLYGON.
Если не включить объявление redefine, то новое объявление компонента perimeter среди других компонентов класса RECTANGLE приведет к ошибке, поскольку у RECTANGLE уже есть компонент perimeter, унаследованный от POLYGON, т.е. у некоторого компонента окажется два определения.

Класс RECTANGLE выглядит следующим образом:

indexing description: "Прямоугольники, - специальный случай многоугольников" class RECTANGLE inherit POLYGON redefine perimeter end creation make feature -- Инициализация make (center: POINT; s1, s2, angle: REAL) is -- Установить центр прямоугольника в center, длины сторон -- s1 и s2 и ориентацию angle. do ... end feature -- Access side1, side2: REAL -- Длины двух сторон diagonal: REAL -- Длина диагонали perimeter: REAL is -- Сумма длин сторон -- (Переопределение версии из POLYGON) do Result := 2 S (side1 + side2) end invariant four_sides: count = 4

first_side: (vertices.i_th (1)).distance (vertices.i_th (2)) = side1 second_side: (vertices.i_th (2)).distance (vertices.i_th (3)) = side2 third_side: (vertices.i_th (3)).distance (vertices.i_th (4)) = side1 fourth_side: (vertices.i_th (4)).distance (vertices.i_th (1)) = side2 end



Для списка i_th(i) дает элемент в позиции i ( i-й элемент, следовательно это имя запроса).
Так как RECTANGLE является наследником класса POLYGON, то все компоненты родительского класса применимы и к новому классу: vertices, rotate, translate, perimeter (в переопределенном виде) и все остальные. Их не нужно повторять в определении нового класса.

Этот процесс транзитивен: всякий класс, будучи наследником RECTANGLE, например, SQUARE, также обладает всеми компонентами класса POLYGON.


Программы с дырами


Только что обсужденные методы являются центральным вкладом ОО-подхода в повторное использование: они предлагают не замороженные навсегда компоненты (которые можно обнаружить в библиотеках подпрограмм), а гибкие решения, которые предоставляют базисные схемы и могут быть адаптированы к нуждам многих разнообразных приложений.

Одной из центральных тем при обсуждении повторного использования была необходимость соединить эту цель с адаптивностью во избежание дилеммы: переиспользовать или переделывать. Этому в точности соответствует только что описанная схема, для которой можно предложить название "программы с дырами". В отличие от библиотек подпрограмм, в которых все, кроме значений фактических параметров, жестко фиксировано, у программ с дырами, использующих классы, образцом для которых служит модель SEQUENTIAL_TABLE, имеется место для частей, создаваемых пользователем.

Эти наблюдения помогают понять образ "блока Лего", часто используемый при обсуждении повторно использования. В наборе Лего компоненты фиксированы, детская фантазия направлена на составление из них интересной структуры. Тот же подход свойственен и программированию, - истоки его в традиционных библиотеках подпрограмм. Часто при разработке ПО требуется в точности обратное: сохранять структуру, но заменять компоненты. На самом деле, этих компонентов может еще и не быть, на их места помещаются "заглушки" (отложенные компоненты), вместо которых затем нужно вставить эффективные варианты.

По аналогии с детскими игрушками можно вернуться в детство и представить себе игровую доску с отверстиями разной формы, в которые ребенок должен вставлять соответствующие фигуры. Он должен понять, что квадратный блок подходит для квадратного отверстия, а круглый блок - для круглого отверстия.

Можно также представлять частично отложенный класс поведения (или набор таких классов, называемый "библиотекой"), как устройство с несколькими электрическими розетками - отложенными классами - в которые разработчик приложения будет вставлять совместимые с ними устройства. Эту метафору можно продолжить: для устройства важны меры предосторожности - утверждения, выражающие требования к допустимым съемным устройствам, например, спецификация розетки определяет допустимое напряжение, силу тока и другие электрические параметры.



Роль отложенных классов при анализе и глобальном проектировании


Отложенные классы играют также ключевую роль при использовании ОО-метода не только на уровне реализации, но и на самых ранних и верхних уровнях построения системы - анализе и глобальном проектировании. Целью является создание спецификации системы и ее архитектуры, для проекта требуется также абстрактное описание каждого модуля без деталей его реализации.

Обычно даваемая в этом случае рекомендация состоит в использовании отдельных обозначений: некоторого "метода" анализа (за этим термином во многих случаях стоит просто некоторая графическая нотация) и некоторого ЯПП (PDL) (языка проектирования программ, зачастую тоже графического). Но у этого подхода много недостатков:

Разрыв между последовательными шагами процесса разработки представляет серьезную угрозу для качества ПО. Необходимость трансляции из одного формализма в другой может привести к ошибкам и подвергает опасности целостность системы. ОО-технология, напротив, предлагает перспективу непрерывного процесса разработки ПО.Многоярусный подход является особенно губительным для этапов сопровождения и эволюции системы. Крайне сложно гарантировать согласованность проекта и реализации на этих этапах.Наконец, большинство существующих подходов к анализу и проектированию не предлагают никакой поддержки формальной спецификации функциональных свойств модулей, не зависящей от их реализации, например в форме утверждений.

Последний комментарий приводит к парадоксу уровней: точная нотация, подобная языку, используемому в этой книге, иногда отклоняется как "низкоуровневая" или "ориентированная на реализацию", поскольку внешне выглядит как язык программирования. На самом же деле, благодаря утверждениям и такому механизму абстракции как отложенные классы, их уровень существенно выше уровня большинства имеющихся подходов к анализу и проектированию. Многим требуется время, чтобы осознать это, поскольку раньше их учили тому, что высокий уровень абстракции означает неопределенность и что абстракция всегда должна быть неточной.

Использование отложенных классов для анализа и проектирования позволяет нам одновременно быть абстрактными и точными, и применять один и тот же язык на протяжении всего процесса разработки. При этом устраняются разрывы в концепциях, переход от описания модуля на высоком уровне к реализациям может происходить плавно внутри одного формализма. Даже нереализованные операции проектируемых модулей, представленные отложенными процедурами, можно достаточно точно охарактеризовать с помощью предусловий, постусловий и инвариантов.

Система обозначений, которая к этому моменту развернута почти до конца, покрывает этапы анализа и проектирования, а также и реализации. Одни и те же понятия и конструкции применяются на всех стадиях, различаются только уровни абстракции и детализации.



Смысл наследования


Мы уже рассмотрели основные способы наследования. Многое еще предстоит изучить, в частности, множественное наследование и детали того, что происходит с утверждениями в контексте наследования (понятие субконтрактов).

Но вначале следует поразмышлять над этими фундаментальными понятиями и выяснить их значение для вопроса о качестве ПО и для процесса разработки ПО.



Соглашения о графических обозначениях


Сейчас можно полностью объяснить графические символы, использованные на рис. 14.8. Звездочкой отмечаются отложенные компоненты или классы:

FIGURE* display* perimeter* -- На уровне класса OPEN_FIGURE на рис. 14.8

Знак плюс означает "эффективный" и им отмечается эффективизация компонента:

perimeter+ -- На уровне POLYGON на рис. 14.8

Чтобы указать, что класс эффективный, можно отметить его знаком +. По умолчанию, неотмеченный класс считается эффективным, так же как в текстовом виде объявление class C без ключевого слова deferred означает, что класс эффективный.

Можно присоединять одиночный плюс к компоненту для указания того, что он стал эффективным. Например, компонент perimeter появляется как отложенный и, следовательно, имеет вид perimeter* в классе CLOSED_FIGURE. Затем на уровне POLYGON для этого компонента дается реализация и он отмечается в этом классе как perimeter+.

Наконец, два знака плюс отмечают переопределение:

perimeter++ -- На уровне RECTANGLE и SQUARE на рис.14.8



Согласованность типов


Наследование согласовано с системой типов. Основные правила легко объяснить на приведенном выше примере. Предположим, что имеются следующие объявления:

p: POLYGON

r: RECTANGLE

Выделим в приведенной выше иерархии нужный фрагмент (рис. 14.6).

Тогда законны следующие выражения:

p.perimeter: никаких проблем, поскольку perimeter определен для многоугольников;p.vertices, p.translate (...), p.rotate (...) с корректными аргументами;r.diagonal, r.side1, r.side2: эти три компонента объявлены на уровне RECTANGLE или QUADRANGLE;r.vertices, r.translate (...), r.rotate (...): эти компоненты объявлены на уровне POLYGON или еще выше и поэтому применимы к прямоугольникам, наследующим все компоненты многоугольников;r.perimeter: то же, что и в предыдущем случае. Но у вызываемой здесь функции имеется новое определение в классе RECTANGLE, так что она отличается от функции с тем же именем из класса POLYGON.


Рис. 14.6.  Фрагмент иерархии геометрических фигур

А следующие вызовы компонентов незаконны, так как эти компоненты недоступны на уровне многоугольника:

p.side1 p.side2 p.diagonal

Это рассмотрение основано на первом фундаментальном правиле типизации:

Правило Вызова Компонентов

Если тип сущности x основан на классе С, то в вызове компонента x.f сам компонент f должен быть определен в одном из предков С.

Напомним, что класс С является собственным предком. Фраза "тип сущности x основан на классе С" напоминает, что для классов, порожденных из родовых, тип может включать не только имя класса: LINKED_LIST [INTEGER]. Но базовый класс для типа - это LINKED_LIST, так что родовой параметр никак не участвует в нашем правиле.

Как и все другие правила корректности, рассматриваемые в этой книге, правило Вызова Компонентов является статическим, - его можно проверять на основе текста системы, а не по ходу ее выполнения. Компилятор (который, как правило, выполняет такую проверку) будет отвергать классы, содержащие некорректные вызовы компонентов. Если успешно реализовать проверку правил типизации, то не возникнет риск того, что скомпилированная система когда-либо во время выполнения применит некоторый компонент к объекту неподходящего типа.

Статическая типизация - это один из главных ресурсов ОО-технологии для достижения объявленной в 1-ой лекции цели - надежности ПО.

Уже отмечалось, что не все подходы к построению ОО-ПО имеют статическую типизацию. Наиболее известным представителем языков с динамической типизацией является Smalltalk, в котором не действует статическое правило вызова, но допускается, чтобы вычисление аварийно завершалось в случае возникновения ошибки: "сообщение не понятно". В лекции, посвященной типизации, будет приведено сравнение разных подходов.



Способы изменения объявлений


Возможность изменить объявление компонента - переопределить или дать его реализацию - обеспечивает гибкость и последовательное проведение разработки. Имеется еще два метода, усиливающих эти качества:

Возможность изменить объявление функции на атрибут.Простой способ сослаться на первоначальную версию в теле нового определения.



Статический тип, динамический тип


Название последнего свойства предполагает различение "статического типа" и "динамического типа". Тип, который используется при объявлении некоторого элемента, является статическим типом соответствующей ссылки. Если во время выполнения эта ссылка присоединяется к объекту некоторого типа, то этот тип становится динамическим типом этой ссылки.

Таким образом, при объявлении p: POLYGON статический тип ссылки, обозначенной p, есть POLYGON, после выполнения create p динамическим типом этой ссылки также является POLYGON, а после присваивания p := r, где r имеет тип RECTANGLE и не пусто, динамическим типом становится RECTANGLE.

Правило согласования типов утверждает, что динамический тип всегда должен соответствовать статическому типу.

Чтобы избежать путаницы напомним, что мы имеем дело с тремя уровнями: сущность - это некоторый идентификатор в тексте класса, во время выполнения ее значение является ссылкой (за исключением развернутого случая), ссылка может быть присоединена к объекту.

У объекта имеется только динамический тип, который он получил в момент создания. Этот тип во время жизни объекта не изменяется.

В каждый момент во время выполнения у ссылки имеется динамический тип, тип того объекта, к которому она сейчас присоединена (или специальный тип NONE, если эта ссылка пуста). Динамический тип может изменяться в результате операций переприсоединения.

Только у сущности имеются и статический, и динамический типы. Ее статический тип - это тип, с которым она была объявлена: если объявление имеет вид x: T, то этим типом будет T. Ее динамический тип в каждый момент выполнения - это тип значения этой ссылки, т.е. того объекта, к которому она присоединена.

В развернутом случае нет ссылки, значением x является объект типа T, и T является и статическим типом и единственно возможным динамическим типом для x.



Статическое связывание как оптимизация


В некоторых случаях главным требованием является эффективность, и даже указанные выше небольшие накладные расходы нежелательны. В этом случае можно заметить, что они не всегда обоснованы. Вызов x.f (a, b, c...) не нуждается в динамическом связывании в следующих случаях:

f нигде в системе не переопределяется (имеет только одно объявление);x не является полиморфной, иначе говоря, не является целью никакого присоединения, источник которого имеет другой тип.

В любом из таких случаев, выявляемых хорошим компилятором, сгенерированный для x.f (a, b, c...) код может быть таким же, как и код, генерируемый компиляторами C, Pascal, Ada или Fortran для вызова f (x, a, b, c...). Никакие накладные расходы не потребуются.

Компилятор ISE, являющийся частью окружения, описанного в последней лекции, сейчас выполняет оптимизацию (1), планируется добавить и (2) (анализ (2) является, фактически, следствием механизмов анализа типов, описанных в лекции о типизации).

Хотя (1) интересно и само по себе, непосредственная его польза ограничивается сравнительно низкой стоимостью динамического связывания (см. приведенную выше статистику). Настоящий выигрыш от него непрямой, поскольку (1) дает возможность третьей оптимизации:

При любой возможности применять автоматическую подстановку кода процедуры.

Такая подстановка означает расширение тела программы текстом вызываемой процедуры в месте ее вызова. Например, для процедуры

set_a (x: SOME_TYPE) is -- Сделать x новым значением атрибута a. do a := x end

компилятор может сгенерировать для вызова s.set_a (some_value) такой же код, какой компилятор Pascal сгенерирует для присваивания s.a := some_value (недопустимое для нас обозначение, поскольку оно нарушает скрытие информации). В этом случае вообще нет накладных расходов, поскольку сгенерированный код не содержит вызова процедуры.

Подстановка кода традиционно рассматривается как оптимизация, которую должны задавать программисты. Ada включает прагму (указание транслятору) inline, C и С++ предлагают аналогичные механизмы.
Но этому подходу присущи внутренние ограничения. Хотя для небольшой, статичной программы компетентный программист может сам определить, какие процедуры можно подставлять, для больших развивающихся проектов это сделать невозможно. В этом случае компилятор с приличным алгоритмом определения подстановок будет намного превосходить догадки программистов.

Для каждого вызова, к которому применимо автоматическое статическое связывание (1), ОО-компилятор может определить, основываясь на анализе соотношения между временем и памятью, стоит ли применять автоматическую подстановку кода процедуры (3). Это одна из самых поразительных оптимизаций - одна из причин, по которой можно достичь эффективности произведенного вручную кода Си или Фортрана, а иногда, на больших системах и превзойти ее.

К улучшению эффективности, растущему с увеличением размера и сложности программ, автоматическая подстановка кода добавляет преимущество большей надежности и гибкости. Как уже отмечалось, подстановка кода семантически корректна только для процедуры, которую можно статически ограничить, например, как в случаях (1) и (2). Это не только допустимо, но также вполне согласуется с ОО-методом, в частности, с принципом Открыт-Закрыт, если разработчик на полпути разработки большой системы добавит переопределение некоторого компонента, имевшего к этому моменту только одну реализацию. Если же код процедуры вставляется вручную, то в результате может получиться программа с ошибочной семантикой (поскольку в данном случае требуется динамическое связывание, а вставка кода, конечно, означает статическое связывание). Разработчики должны сосредотачиваться на построении корректных программ, не занимаясь утомительными оптимизациями, которые при выполнении вручную приводят к ошибкам, а на деле могут быть автоматизированы.

Имеются и некоторые другие требования для того, чтобы подстановка кода была корректной, в частности, она применима только к нерекурсивным вызовам. Даже корректную подстановку следует применять при разумном соотношении между временем и памятью: подставляемая процедура должна быть небольшой и должна вызываться небольшое число раз.


Последнее замечание об эффективности. Опубликованная статистика для ОО-языков показывает, что где-то от 30% до 60% вызовов на самом деле используют динамическое связывание. Это зависит от того, насколько интенсивно разработчики используют специфические свойства методов. В системе ISE это соотношение близко к 60%. С использованием только что описанных оптимизаций платить придется только за динамическое связывание только тех вызовов, которые действительно в нем нуждаются. Для оставшихся динамических вызовов накладные расходы не только малы (ограничены константой), но и логически необходимы, - в большинстве случаев для достижения результата, эквивалентного динамическому связыванию, придется использовать условные операторы (if ... then ... или case ... of ...), которые могут оказаться дороже приведенного выше простого механизма, основанного на доступе к массивам. Поэтому неудивительно, что ОО-программы, откомпилированные хорошим компилятором, могут соревноваться с нап исанным вручную кодом на C.


Типизация при наследовании


Замечательная гибкость, обеспечиваемая наследованием, не связана с потерей надежности, поскольку используется статическая проверка типов, гарантирующая во время компиляции отсутствие некорректных комбинаций типов во время выполнения.



У14.1 Многоугольники и прямоугольники


Дополните версии классов POLYGON и RECTANGLE, наброски которых приведены в начале лекции. Включите в них подходящие процедуры создания.



У14.2 Многоугольник с малым числом вершин


Инвариант класса POLYGON требует, чтобы у каждого многоугольника было, по крайней мере, три вершины; отметим, что функция perimeter не будет работать для пустого многоугольника. Измените определение этого класса так, чтобы он покрывал и случаи вырожденных многоугольников с числом вершин меньше трех.



У14.3 Геометрические объекты с двумя координатами


Опишите класс TWO_COORD, задающий объекты с двумя вещественными координатами, среди наследников которого были бы классы POINT (ТОЧКА), COMPLEX (КОМПЛЕКСНОЕ_ЧИСЛО) и VECTOR (ВЕКТОР). Будьте внимательны при помещении каждого компонента на подходящий для него уровень иерархии.



У14.4 Наследование без классов


В этой лекции были представлены два взгляда на наследование: будучи модулем, класс-наследник предлагает службы своего родителя плюс еще некоторые, будучи типом, он реализует отношение "является" (каждый экземпляр наследника является также экземпляром каждого из родителей). "Пакетами" модульных, но не ОО-языков (таких как Ада (Ada) или Модула-2 (Modula-2)) являются модули, но не типы. При первой интерпретации к ним можно было бы применить наследование. Обсудите, в каком виде наследование может быть введено в модульные языки. Не забудьте рассмотреть при этом принцип Открыт-Закрыт.



У14.5 Классы без объектов


Не разрешается создавать объекты отложенных классов. В одной из предыдущих лекций был указан другой способ создания класса без объектов: включить в него пустую процедуру создания. Эквивалентны ли эти два механизма? Можно ли выделить случаи, когда использование одного из них предпочтительнее, чем другого? (Указание: в отложенном классе должен быть хоть один отложенный компонент.)



У14.6 Отложенные классы и прототип


Отложенные классы нельзя инициализировать. С другой стороны, были приведены аргументы в пользу того, чтобы в первой версии класса в проекте все компоненты оставались отложенными. Может появиться желание "выполнить" такой проект: при проектировании ПО иногда хочется вступить в игру как можно раньше, исполнить неполные реализации, чтобы получить практический опыт и проверить некоторые аспекты системы даже при неполностью реализованных других аспектах. Обсудите доводы за и против того, чтобы иметь в компиляторе специальную параметр "прототип", позволяющий инициализировать отложенный класс и выполнить отложенный компонент (как пустую операцию). Обсудите детали.



У14.7 Библиотека поиска в таблицах (семестровый проект)


Основываясь на обсуждении таблиц в этой лекции и в лекции о повторном использовании, спроектируйте библиотеку классов таблиц, включающую различные категории представлений таблиц: хеш-таблицы, последовательные (линейные) таблицы, древообразные таблицы и др.



У14.9 Комплексные числа


(Это упражнение предполагает знакомство со всеми лекциями вплоть до 5-й курса "Основы объектно-ориентированного проектирования".) В примере, рассмотренном при обсуждении интерфейса модулей, использовались комплексные числа с двумя разными представлениями, при этом соответствующие изменения в представлениях остались "за кадром". Определите можно ли получить эквивалентный результат с помощью наследования, а именно, создать класс COMPLEX (КОМПЛЕКСНЫЕ) и его наследников CARTESIAN_COMPLEX (КОМПЛЕКСНЫЕ_В_ДЕКАРТОВЫХ_КООРДИНАТАХ) и POLAR_COMPLEX (КОМПЛЕКСНЫЕ_В_ПОЛЯРНЫХ_КООРДИНАТАХ).


Взгляд на класс как на модуль


С этой точки зрения наследование особенно эффективно в качестве метода повторного использования.

Модуль это множество служб, предлагаемых внешнему миру. Без наследования каждому новому модулю пришлось бы самому определять все предоставляемые им службы. Конечно, реализации этих служб могут основываться на службах, предоставляемых другими модулями: это и есть цель отношения "быть клиентом". Но единственным способом определить новый модуль является добавление новых служб к ранее определенным модулям.

Наследование предоставляет эту возможность. Если B является наследником A, то все службы (компоненты) A автоматически доступны в B, и их не нужно в нем явно определять. В соответствии со своими целями B может добавить новые компоненты. Дополнительная гибкость обеспечивается переопределением, позволяющим B по-разному использовать реализации, предлагаемые A: некоторые из них не меняются, а другие переделываются в более подходящие для данного класса версии.

Это приводит к такому стилю разработки ПО, при котором вместо попытки решать каждую новую задачу с нуля поощряется ее решение, основанное на предыдущих достижениях и на расширении их результатов. Его смысл состоит в экономии - зачем повторять то, что уже однажды было сделано? - и в скромности, в духе известного замечания Ньютона, что он смог достичь таких высот только потому, что стоял на плечах гигантов.

Полное преимущество этого подхода лучше всего понимается в терминах принципа Открыт-Закрыт, введенного в одной из предыдущих лекций. (Стоило бы перечитать этот раздел в свете только что введенных понятий.) Этот принцип утверждает, что хорошая структура модуля должна быть и закрытой, и открытой.

Закрытой, поскольку клиентам для выполнения их собственной разработки нужны службы модуля и, будучи один раз зафиксированы в некоторой его версии, они не должны изменяться при введении новых служб, в которых клиент не нуждается.Открытой, так как нет никакой гарантии, что с самого начала в модуль были включены все службы, потенциально необходимые некоторому клиенту.


Эти два требования представляют дилемму, и классическая структура модулей не дает ключа к ее разгадке. Но наследование эту проблему решает. Класс закрыт, так как он может компилироваться, заноситься в библиотеку и использоваться классами-клиентами. Но он также открыт, поскольку любой новый класс может его использовать в качестве родителя, добавляя новые компоненты и меняя объявления некоторых унаследованных компонентов, при этом совершенно не нужно изменять исходный класс и беспокоить его клиентов. Это фундаментальное свойство при применении наследования к построению повторно используемого расширяемого ПО.



Если бы довести эту идею до предела, то каждый класс просто добавлял бы один компонент к его родителям! Конечно, это не рекомендуется. Решение завершить класс не следует принимать легковесно, оно должно основываться на осознанном заключении о том, что класс в его нынешнем состоянии уже обеспечивает логически последовательный набор служб - стройную абстракцию данных - для потенциальных клиентов.

Следует помнить, что принцип Открыт-Закрыт не отменяет последующей переделки неадекватных служб. Если плохой результат явился следствием неверной спецификации компонента, то мы не сможем модифицировать класс так, чтобы это не отразилось на его клиентах. Однако, благодаря переопределению, принцип Открыт-Закрыт все еще применим, если вводимое изменение согласовано с объявленной спецификацией.
Одним из самых трудных вопросов, связанных с проектированием повторно используемых структур модулей, была необходимость использовать преимущества большой общности, которая может существовать у разных однотипных групп абстракций данных - у всех хеш-таблиц, всех последовательных таблиц и т. п. Используя структуры классов, связанных наследованием, можно получить выигрыш, зная логические соотношения между разными реализациями. Внизу на диаграмме представлен грубый и частичный набросок возможной структуры библиотеки для работы с таблицами. В этой схеме естественно используется множественное наследование, которое будет детально обсуждаться в следующей лекции.




Рис. 14.12.  Набросок структуры библиотеки таблиц

Эта диаграмма наследования представляет только набросок, хотя на ней показаны типичные для этих структур связи по наследованию. Систематическую классификацию таблиц и других контейнеров, основанную на наследовании, см. в [M 1994a].
При таком взгляде требование повторного использования можно выразить весьма точно: идея состоит в том, чтобы передвинуть определение каждого компонента как можно выше в иерархии наследования так, чтобы он мог наследоваться максимально возможным числом классов-потомков. Можно представлять этот процесс как игру переиспользования, в которую играют на доске, представляющей иерархии наследования (такие, как на рис. 14.12), фигурами, представляющими компоненты. Выигрывает тот, кто сможет в результате открытия абстракций более высокого уровня передвинуть как можно больше компонентов как можно выше, и по пути, благодаря обнаружению общих свойств, сможет слить наибольшее число фигур.


Взгляд на класс как на тип


С точки зрения типов наследование адресуется и к повторному использованию, и к расширяемости, в частности, к тому, что в предыдущем обсуждении называлось непрерывностью. Здесь ключом является динамическое связывание.

Тип - это множество объектов, характеризуемых (как мы знаем из теории АТД) определенными операциями. INTEGER описывают множество целых чисел с арифметическими операциями, POLYGON - это множество объектов с операциями vertices, perimeter и другими.

Для типов наследование представляет отношение "является", например, во фразах "каждая собака является млекопитающим", "каждое млекопитающее является животным". Аналогично, прямоугольник является многоугольником.

Что означает это отношение?

Если рассматривать значения каждого типа, то это отношение является просто отношением включения множеств: собаки образуют подмножество множества животных, экземпляры класса RECTANGLE образуют подмножество экземпляров класса POLYGON. (Это следует из определения "экземпляра" в начале этой лекции, заметим, что прямой экземпляр класса RECTANGLE не является прямым экземпляром класса POLYGON).Если рассматривать операции, применимые к каждому типу, то сказать, что B есть A, означает, что каждая операция, применимая к A применима также и к экземплярам B. (Однако при переопределении B может создать свою собственную реализацию, которая для экземпляров B заменит реализацию, предоставленную A.)

Используя это отношение можно описывать схемы отношения "является", представляющие многие варианты типов, например, все варианты класса FIGURE. Каждая новая версия таких подпрограмм как rotate и display определяется в классе, задающем соответствующий вариант типа. В случае таблиц, например, каждый класс на графе обеспечивает свою собственную реализацию операций search, insert, delete, разумеется, за исключением тех случаев, когда для него подходит реализация родителя.

Предостережение об использовании отношения "является" ("is a").
Начинающие - но я полагаю, ни один из читателей, добравшийся до этого места даже с минимумом внимания, - иногда путают наследование с отношением "экземпляр - образец", считая класс SAN_FRANCISCO наследником класса CITY. Это, как правило, ошибка: CITY - это класс, у которого может быть экземпляр, представляющий Сан Франциско. Чтобы избежать таких ошибок, достаточно помнить, что термин "является" означает не "x является одним из A" (например, "Сан Франциско является городом (CITY)), т.е. отношением между экземпляром и категорией, а выражает "всякий B является A" (например, "всякий ГОРОД является ГЕОГРАФИЧЕСКОЙ_ЕДИНИЦЕЙ"), т.е. отношение между двумя категориями, в программировании - двумя классами. Некоторые авторы предпочитают называть это отношение "является разновидностью" или "может действовать как" [Gore 1996]. Отчасти это дело вкуса (и частично этот предмет будет обсуждаться в лекции о методологии наследования), но поскольку мы уже знаем, как избежать тривиальной ошибки, то будем и далее использовать наиболее распространенное название "является", не забывая при этом, что оно относится к отношению между категориями.


Задание семантики отложенных компонентов и классов


Хотя у отложенного компонента нет реализации, а у отложенного класса либо нет реализации, либо он реализован частично, часто требуется задать их абстрактные семантические свойства. Для этой цели можно использовать утверждения.

Как и другие классы, отложенный класс может иметь инвариант, а у отложенного компонента может быть предусловие, постусловие или оба эти утверждения.

Рассмотрим пример линейных списков, описанных независимо от конкретной реализации. Как и для многих других структур такого рода, удобно связать с каждым списком курсор, указывающий на текущий активный элемент.


Рис. 14.9.  Список с курсором

Этот класс является отложенным:

indexing description: "Линейные списки" deferred class LIST [G] feature -- Access count: INTEGER is -- Число элементов deferred end index: INTEGER is -- Положение курсора deferred end item: G is -- Элемент в позиции курсора deferred end feature - Отчет о статусе after: BOOLEAN is -- Курсор за последним элементом? deferred end before: BOOLEAN is -- Курсор перед первым элементом? deferred end feature - Сдвиг курсора forth is -- Передвинуть курсор на одну позицию вперед. require not after deferred ensure index = old index + 1 end ... Другие компоненты ... invariant non_negative_count: count >= 0 offleft_by_at_most_one: index >= 0 offright_by_at_most_one: index <= count + 1 after_definition: after = (index = count + 1) before_definition: before = (index = 0) end

Здесь инвариант выражает соотношения между разными запросами. Первые два предложения утверждают, что курсор может выйти за границы множества элементов не более чем на одну позицию слева или справа.


Рис. 14.10.  Позиции курсора

Два последних предложения инварианта можно также представить в виде постусловий: ensure Result = (index = count + 1) для after и ensure Result = (index = 0) для before. Такой выбор всегда возникает при выражении свойств, включающих только запросы без аргументов. Я предпочитаю использовать предложения инварианта, рассматривая такие свойства как глобальные свойства класса, а не прикреплять их к конкретному компоненту.


Утверждения о forth точно выражают то, что должна делать эта процедура: передвигать курсор на одну позицию. Поскольку курсор должен оставаться в пределах списка элементов плюс две позиции "меток" слева и справа, то применение forth требует выполнения условия not after, а результатом будет, как сказано в постусловии, увеличение index на один.
Вот другой пример - наш старый друг стек. Нашей библиотеке потребуется общий класс STACK [G], который будет отложенным, так как он должен покрывать всевозможные реализации. Его собственные потомки, такие как FIXED_STACK и LINKED_STACK, будут описывать конкретные реализации. Одной из отложенных процедур класса STACK является put:
put (x: G) is -- Поместить x на вершину. require not full deferred ensure not_empty: not empty pushed_is_top: item = x one_more: count = old count + 1 end
Булевские функции empty и full (также отложенные на уровне STACK) выражают свойство стека быть пустым и заполненным.
Только с помощью утверждений отложенные классы достигают своей полной силы. Как уже отмечалось (хотя детали появятся через две лекции), предусловия и постусловия применимы ко всем переопределениям процедуры. Это особенно важно в отложенном случае: в нем такие утверждения будут ограничивать все допустимые реализации. Таким образом, приведенная спецификация ограничивает все варианты put в потомках класса STACK.
Благодаря использованию утверждений, можно сделать отложенные классы достаточно информативными и семантически богатыми, несмотря на отсутствие у них реализаций.
В конце этой лекции мы вновь обратимся к отложенным классам и исследуем глубже их роль в процессе ОО-анализа, проектирования и реализации.